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Abstract

Statistical risk assessments inform consequential decisions such as pretrial release in criminal

justice, and loan approvals in consumer finance. Such risk assessments make counterfactual predic-

tions, predicting the likelihood of an outcome under a proposed decision (e.g., what would happen

if we approved this loan?). A central challenge, however, is that there may have been unmea-

sured confounders that jointly affected past decisions and outcomes in the historical data. This

paper proposes a tractable mean outcome sensitivity model that bounds the extent to which unmea-

sured confounders could affect outcomes on average. The mean outcome sensitivity model partially

identifies the conditional likelihood of the outcome under the proposed decision, popular predic-

tive performance metrics (e.g., accuracy, calibration, TPR, FPR), and commonly-used predictive

disparities. We derive their sharp identified sets, and we then solve three tasks that are essential

to deploying statistical risk assessments in high-stakes settings. First, we propose a doubly-robust

learning procedure for the bounds on the conditional likelihood of the outcome under the proposed

decision. Second, we translate our estimated bounds on the conditional likelihood of the outcome

under the proposed decision into a robust, plug-in decision-making policy. Third, we develop doubly-

robust estimators of the bounds on the predictive performance of an existing risk assessment. We

apply our methods to analyze a real-world credit-scoring task, illustrating how varying assump-

tions on unmeasured confounding leads to substantive changes in the credit score’s predictions and

evaluations of its predictive disparities.
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1 Introduction

Statistical risk assessments inform high-stakes decisions by providing counterfactual predictions of the

likelihood of an outcome under a proposed decision.1 A central challenge, however, is that the available

training and evaluation data only contain observed outcomes under historical decision-making policies.

For example, pretrial risk assessments aim to predict the likelihood that a defendant would fail to

appear in court if they were released prior to their trial; but we only observe whether a past defendant

failed to appear in court if a judge decided to release them. Consumer credit scores aim to predict the

likelihood an applicant would default on a loan if the applicant were approved; but we only observe

whether a past applicant defaulted if the financial institution approved them and the applicant accepted

the offered terms.

Many existing counterfactual methods for predicting individual risk (e.g., Schulam and Saria, 2017;

Coston et al., 2020; Mishler, Kennedy and Chouldechova, 2021; Mishler and Kennedy, 2021) or individ-

ual causal effects (e.g., Shalit, Johansson and Sontag, 2017; Wager and Athey, 2018; Künzel et al., 2019;

Nie and Wager, 2020; Kennedy, 2022b) tackle this challenge by making the strong assumption of uncon-

foundedness. Unconfoundedness requires that there are no unmeasured confounders that affected both

historical decisions and outcomes, or equivalently that historical decisions were as-good-as randomly

assigned conditional on recorded features. In many consequential decision-making settings, however,

unconfoundedness is an unreasonable assumption because historical decisions may have been based on

additional information that we do not have access to. Ignoring such unmeasured confounding would

lead to inaccurate individual risk predictions and misleading evaluations of existing risk assessments.

This paper develops a comprehensive framework for learning and evaluating statistical risk assess-

ments that is robust to unmeasured confounding. We propose the mean outcome sensitivity model

(MOSM) as a nonparametric sensitivity analysis model for unmeasured confounding in settings where

risk assessments are deployed. The MOSM bounds the extent to which unmeasured confounders could

possibly affect the likelihood of the outcome in the population (e.g., “how much could default rates

possibly vary between observably similar approved and rejected applicants?”). In this sense, the MOSM

translates statistical assumptions about unmeasured confounding into interpetable units for practition-

ers. Over all levels of unmeasured confounding consistent with the MOSM, we robustly solve three

tasks essential for deploying a statistical risk assessment in high-stakes settings: (i) estimate personal-

ized risk predictions; (ii) translate personalized risk predictions into recommended interventions; and

(iii) audit the predictive performance and disparities of a risk assessment.

1.1 Setting and background:

We consider a setting with data Oi = (Xi, Di, Yi) for i = 1, . . . , n drawn i.i.d. from some joint

distribution P(·), where Xi ∈ X ⊆ Rd is a feature vector, Di ∈ {0, 1} is a binary intervention that was

determined by some historical decision-making policy, and Yi ∈ {0, 1} is the binary observed outcome.

Let Yi(0), Yi(1) denote potential outcomes under Di = 0, Di = 1 respectively, and the observed outcome

satisfies Yi = Yi(Di). We assume P(Yi(1) = 1) > 0 and P(Di = 1 | Xi) ≥ δ with probability one for

1These settings include, for example, child welfare screenings (Chouldechova et al., 2018; Saxena et al., 2020), consumer
finance (Khandani, Kim and Lo, 2010; Einav, Jenkins and Levin, 2013; Blattner and Nelson, 2021; Fuster et al., 2022),
criminal justice (Berk, 2012; Kleinberg et al., 2018), education (Smith, Lange and Huston, 2012; Sansone, 2019), and
health care (Caruana et al., 2015; Choi et al., 2016; Chen et al., 2020) among many others.
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some δ > 0.

The goal in constructing a counterfactual risk assessment or risk score s(·) : X → [0, 1] is to predict

the conditional probability Yi(1) = 1 given the features Xi. We therefore refer to µ∗(x) := P(Yi(1) =

1 | Xi = x) as the target regression. The goal in auditing an existing risk assessment s(·) is to estimate

its predictive performance

perf(s;β) := E[β0(Xi; s) + β1(Xi; s)Yi(1)], (1)

perf+(s;β) := E[β0(Xi; s) | Yi(1) = 1], (2)

where β0(Xi; s), β1(Xi; s) are user-specified functions that may depend on the features Xi and risk

assessment s(·). We refer to (1) as the overall predictive performance of s(Xi) and (2) as its positive class

predictive performance. Analogously define perf−(s;β) := E[β0(Xi; s) | Yi(1) = 0] to be the negative

class predictive performance. As we discuss in Section 2, these predictive performance measures recover

commonly used risk functions or predictive diagnostics for alternative choices of β0(Xi; s), β1(Xi; s).

They can also be used to audit the group fairness properties of a risk assessment (e.g., Mitchell et al.,

2019; Barocas, Hardt and Narayanan, 2019).

Under unconfoundedness (Yi(0), Yi(1)) ⊥⊥ Di | Xi, the target regression and the predictive perfor-

mance measures are point identified using the observed outcome regression µ1(Xi) := P(Yi = 1 | Di =

1, Xi = x) or inverse propensity score weighting (e.g., Coston et al., 2020). Unconfoundedness, however,

is particularly implausible in settings where counterfactual risk assessments are deployed. In settings

like pretrial release and consumer lending, historical decisions were chosen by existing decision-makers

that likely observed additional information relevant to the outcome Yi(1) but are not captured by the

recorded features Xi. For example, judges interact with defendants during pretrial release hearings and

may learn extra extenuating information that affected their release decision (Kleinberg et al., 2018;

Arnold, Dobbie and Hull, 2020b; Rambachan, 2021). In consumer lending, an applicant’s decision to

accept an offered loan may depend on whether they secured a credit offer at a competing financial

institution.

1.2 Contributions

In this paper, we propose a flexible, nonparametric mean outcome sensitivity model (MOSM) for

unmeasured confounding that is natural in high-stakes settings. The MOSM bounds the extent to which

the likelihood of the outcome Yi(1) = 1 could be affected by unmeasured confounders conditional on the

observed featuresXi – formally, pointwise bounds on the difference P(Yi(1) = 1 | Di = 0, Xi)−P(Yi(1) =

1 | Di = 1, Xi). Since practitioners already model and evaluate risk predictions in these settings, the

MOSM enables them to directly translate their intuitions about how much risk could plausibly vary

in the population into statistical assumptions on unmeasured confounding. We offer several ways to

specify such bounds under the MOSM in practice. For example, we show that the MOSM is implied by

the existence of an instrumental variable for historical decisions (e.g., Manski, 1994; Balke and Pearl,

1997).

Under the MOSM, the target regression, predictive performance measures, and predictive disparity

measures are partially identified. We derive their sharp identified sets under the MOSM. We provide
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closed-form expressions for the smallest and largest values of the target regression and overall predictive

performance measures that are compatible with the MOSM, and show that the sharp bounds on the

positive class (and negative class) predictive performance can be characterized by linear-fractional

programs. We then solve three tasks that are essential to deploying counterfactual risk assessments in

high-stakes settings.

Our first task is to estimate the sharp bounds on the target regression µ∗(x) under the MOSM. In

Section 3, we develop nonparametric estimators for the sharp bounds, which we refer to as DR-Learners,

that leverage sample-splitting and take the form of two-stage regression procedures (e.g., Foster and

Syrgkanis, 2020; Kennedy, 2022b). The first stage uses one fold of the data to construct nonparametric

estimates of nuisance functions. The second stage applies the estimated nuisance functions on the

other fold to construct a pseudo-outcome regression estimator based on efficient influence functions.

We derive the integrated mean square error convergence rate of our DR-Learners to the true bounds

relative to that of an oracle non-parametric regression procedure under generic assumptions. When

the oracle error is small, our DR-Learners converge to the true bounds quickly whenever the first-

stage nuisance functions are estimated at sufficiently fast rates, which are achievable using classic

nonparametric regression techniques or modern machine learning methods. This result is agnostic – it

applies to any choice of nonparametric estimators of the nuisance functions in the first stage and for a

large class of nonparametric regression procedures in the second stage. To prove this result, we build

on Kennedy (2022b), and provide a model-free oracle inequality for the L2(P)-error of nonparametric

regression with estimated pseudo-outcomes that may be of independent interest.

Since counterfactual risk assessments are typically deployed to inform existing decision-makers

about a possible intervention, our second task is to use the historical data to make robust recommended

interventions. We evaluate the performance of a plug-in recommendation rule that thresholds our DR-

Learners of the target regression bounds in Section 4 by analyzing its worst-case performance across

all levels of unmeasured confounding consistent with the MOSM. We derive bounds on the worst-case

performance of our plug-in rule relative to the optimal (infeasible) max-min recommendation rule. This

bound implies that the plug-in decision rule is asymptotically max-min optimal again whenever the

first-stage nuisance functions are estimated at sufficiently fast rates.

Our final task is to robustly audit or evaluate the predictive performance (perf(s;β) or perf+(s;β))

and predictive disparities of an existing risk assessment s(Xi) under the MOSM in Section 5. Our

estimators for the sharp bounds on overall predictive performance have a closed-form. We derive their

rates of convergence, and provide conditions under which they are
√
n−consistent and asymptotically

normally distributed. Our estimators for the sharp bounds on positive class predictive performance solve

a sample linear-fractional program, and we derive their rates of convergence. Our estimators leverage

efficient influence functions and sample-splitting to control bias from the nonparametric estimation of

first-stage nuisance functions, and therefore allow the use of complex machine learning estimators (e.g.,

Robins et al., 2008; Zheng and van der Laan, 2011; Chernozhukov et al., 2018) in estimating the scalar,

predictive performance measure of interest.

Altogether, our framework provides a full pipeline for the learning and evaluation of counterfactual

risk assessments under unmeasured confounding. We illustrate our theoretical analysis of these methods

in Monte Carlo simulations. Finally, we apply our framework to a real-world credit-scoring task,
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showing how our methods can be used to develop a confounding-robust credit risk score and robustly

audit the predictive disparities of an existing credit score. We find that varying the assumptions on

the strength of unmeasured confounding leads to substantive changes in the credit score’s predictions,

and our evaluations of its predictive disparities.

1.3 Related work

This paper relates to a vast literature on sensitivity analysis in causal inference. One popular approach

assumes the existence of some unmeasured confounder Ui that satisfies (Yi(0), Yi(1)) ⊥⊥ Di | {Xi, Ui}
and bounds how much the unmeasured confounder may affect decisions. For example, Rosenbaum’s Γ-

sensitivity model bounds the extent to which the true odds of treatment P(Di = 1 | Xi, Ui)/P(Di = 0 |
Xi, Ui) may vary across values of the unmeasured confounder Ui = u, Ui = u′ (e.g., Rosenbaum, 1987,

2002). Yadlowsky et al. (2018) derives sharp bounds on the average treatment effect and conditional

average treatment effect under Rosenbaum’s Γ-sensitivity model, developing nonparametric estimators

for the bounds. Zhang et al. (2020) robustly ranks alternative treatment assignment rules under

Rosenbaum’s Γ-sensitivity model. Tan (2006)’s marginal sensitivity model bounds the extent to which

the true odds of treatment may differ from the observed odds P(Di = 1 | Xi)/P(Di = 0 | Xi). A recently

active literature studies robust estimation/inference on average treatment effects, conditional average

treatment effects, and policy learning under the marginal sensitivity model – for example, see Kallus,

Mao and Zhou (2018); Zhao, Small and Bhattacharya (2019); Dorn and Guo (2021); Dorn, Guo and

Kallus (2021); Kallus and Zhou (2021); Jin, Ren and Candès (2021); Nie, Imbens and Wager (2021);

Sahoo, Lei and Wager (2022).2 In settings where risk assessments are deployed, historical decisions

were made by prior decision makers, such as judges, doctors, or managers. It may therefore be difficult

to place assumptions on how unmeasured confounders may have affected past decision-making, but

easier to reason about how they may have possibly affected outcomes.

In this sense, our work sits in a line of causal inference research that proposes sensitivity analysis

models directly on outcome distributions Yi(1) | {Di = 0, Xi} vs. Yi(1) | {Di = 1, Xi}. Brumback

et al. (2004) consider six parametric functional forms for specifying the exact relationship between

these conditional distributions. Dı́az and van der Laan (2013); Luedtke, Diaz and van der Laan (2015);

Dı́az, Luedtke and van der Laan (2018) assume the difference in means of the potential outcome

under treatment versus control is bounded by a user-specified, scalar quantity. Robins, Rotnitzky

and Scharfstein (2000a); Franks, D’Amour and Feller (2019); Scharfstein et al. (2021) assume that the

unidentified distribution Yi(1) | {Di = 0, Xi} is some known transformation (“tilting function”) of the

identified distribution Yi(1) | {Di = 1, Xi}. In practice, practitioners may lack sufficient knowledge

to exactly and fully specify the relationship between these conditional distributions. Any particular

choice of the tilting function may therefore itself be misspecified, and it is common for users to only

report a few choices. In contrast, the MOSM considers all joint distributions that are consistent with

the observable data and the user’s specified bounds. Furthermore, our sensitivity analysis for statistical

risk assessments, predictive performance measures and predictive disparities is novel relative to both

of these literatures.

More broadly, we argue that the MOSM complements alternative sensitivity analysis models for

2Recently, Jin, Ren and Zhou (2022) proposed the f -sensitivity model as a refinement of the marginal sensitivity model.
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violations of unconfoundedness. The effective, reliable, and safe use of statistical risk assessments in

high-stakes settings requires there to be a suite of sensitivity analysis models that can applied off-

the-shelf depending on what is most intuitive/applicable to the practitioner. We formally discuss the

relationship between the MOSM and these existing sensitivity analysis frameworks in Section 8, showing

how practitioners can map between the MOSM and these existing frameworks.

2 The mean outcome sensitivity model

We consider a setting with data Oi = (Xi, Di, Yi) for i = 1, . . . , n drawn i.i.d. from some joint

distribution P(·), where Yi = Yi(Di) for potential outcomes Yi(0), Yi(1). Our tasks are to use O =

{Oi}ni=1 to (i) estimate a new counterfactual risk assessment; (ii) provide personalized recommendations

for future interventions; or (iii) audit the predictive performance of an existing counterfactual risk

assessment.3

Example (Consumer lending). A financial institution observes historical data on past loan applicants,

where Xi contains applicant information such as their reported income, Di is whether the applicant

was granted a loan, and Yi = Yi(1)Di is whether the applicant defaulted on the loan if they were

granted (Yi(0) := 0 since applicants that were not granted the loan cannot default). We use this data

to either audit an existing credit score or construct a new credit score that predicts the likelihood a

new applicant would default on a loan, Yi(1) = 1 (e.g., Blattner and Nelson, 2021; Coston, Rambachan

and Chouldechova, 2021; Fuster et al., 2022). N

Example (Pretrial release). A pretrial release system observes historical data on past defendants,

where Xi contains defendant information such as their current charge and prior conviction history, Di

is whether the defendant was released prior to their trial, and Yi = Yi(1)Di is whether the defendant

failed to appear in court if they were released (Yi(0) := 0 since detained defendants cannot fail to

appear in court). We use this data to either audit an existing pretrial risk score or construct a new

counterfactual pretrial risk score that predicts the likelihood a new defendant would fail to appear in

court, Yi(1) = 1 (e.g., Kleinberg et al., 2018; Jung et al., 2020b,a; Arnold, Dobbie and Hull, 2020a). N

Notation: We write sample averages of a random variable Vi as En[Vi] := n−1
∑n

i=1 Vi. Denote

the observed propensity scores as πd(x) := P(Di = d | Xi = x) for d ∈ {0, 1}. Let ‖ · ‖ denote the

appropriate L2-norm by context. That is, ‖f(·)‖ =
(∫
f(v)2dP (v)

)1/2
for a measurable function f(·)

taking values in R, and ‖v‖ =
(∑k

j=1 v
2
j

)1/2
for a vector v ∈ Rk.

2.1 Target regression and predictive performance measures

The goal in constructing a counterfactual risk assessment is to estimate the target regression µ∗(x) :=

P(Yi(1) = 1 | Xi = x). The goal in auditing an existing risk assessment s(Xi) is to estimate var-

ious predictive performance measures perf(s;β) := E[β0(Xi; s) + β1(Xi; s)Yi(1)] and perf+(s;β) :=

E[β0(Xi; s) | Yi(1) = 1], where β0(Xi), β1(Xi) ∈ R are user-specified functions of Xi. As shorthand,

write β0,i := β0(Xi) and β1,i := β1(Xi).

3Our results on auditing directly extend to the evaluation of a counterfactual decision rule d(·) : X → {0, 1}. In many
cases, such a decision rule is constructed by thresholding a counterfactual risk score – that is, d(x) = 1{s(x) ≤ τ} for
some τ ∈ [0, 1].
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For alternative choices of β0(Xi; s) and β1(Xi; s), these predictive performance measures recover

commonly used risk functions or predictive diagnostics.

Example 1 (MSE, accuracy, cross-entropy, calibration, and failure rate).

a. For β0(Xi) = s2(Xi) and β1(Xi) = 1−2s(Xi), perf(s;β) = E[(s(Xi)− Yi(1))2] is the mean square

error of s(Xi).

b. For β0(Xi) = 1−s(Xi) and β1(Xi) := 2s(Xi)−1, perf(s, β) = E[s(Xi)Yi(1)+(1−s(Xi))(1−Yi(1))]

is the accuracy of s(Xi).

c. For β0(Xi) = − log(1−s(Xi)) and β1(Xi) = log(1−s(Xi))−log(s(Xi)), perf(s;β) = −E[Yi(1) log(s(Xi))+

(1− Yi(1)) log(1− s(Xi))] is the cross-entropy of s(Xi).

d. The calibration of s(Xi) at prediction bin [r1, r2] ⊆ [0, 1] is E[Yi(1) | r1 ≤ s(Xi) ≤ r2] := perf(s;β)

for β0(Xi) := 0, β1(Xi) := 1{r1≤s(Xi)≤r2}
E[1{r1≤s(Xi)≤r2}] assuming P (r1 ≤ s(Xi) ≤ r2) > 0.

Example 2 (TPR and FPR). For β0(Xi) = s(Xi), the true positive rate of s(Xi) is E[s(Xi) | Yi(1) =

1] = perf+(s;β), and the false positive rate of s(Xi) is E[s(Xi) | Yi(1) = 0] = perf−(s;β).

Example 3 (ROC curve). The true positive rate at threshold τ ∈ [0, 1] is E[1{s(Xi) ≥ τ} | Yi(1) =

1] = perf+(s;βτ ) for βτ (Xi) = 1{s(Xi) ≥ τ}. The false positive rate at threshold τ ∈ [0, 1] is

analogously E[1{s(Xi) ≥ τ} | Yi(1) = 0] = perf−(s;βτ ). The ROC curve of s(Xi) is the set

{(perf−(s;βτ ), perf+(s;βτ ) : τ ∈ [0, 1]}.

These predictive performance measures are useful to evaluate the group fairness properties of

a risk assessment (e.g., Mitchell et al., 2019). More concretely, suppose there is a binary sensitive

attribute Gi ∈ {0, 1} with Xi = (X̄i, Gi) (e.g., ethnicity, gender, race, etc). Define the overall predictive

performance of s(Xi) on group Gi = g as perfg(s;β) := E[β0(Xi) + β1(Xi)Yi(1) | Gi = g]. The overall

predictive disparity of the risk assessment is

disp(s;β) := perf1(s;β)− perf0(s;β). (3)

The class-specific predictive performance on group Gi = g, perf+,g(s;β) and perf−,g(s;β), and the class-

specific predictive disparities, disp+(s;β) and disp−(s;β), are defined analogously. By analyzing the

difference in predictive performance measures across groups, the user can summarize average violations

of widely-used predictive fairness definitions.

Example 4 (Equality of opportunity). The risk assessment s(Xi) satisfies equality of opportunity

or balance for the positive class if s(Xi) ⊥⊥ Gi | {Yi(1) = 1} (e.g., Hardt, Price and Srebro, 2016;

Chouldechova, 2017). The positive class predictive disparity disp+(s;β) for β0(Xi) = s(Xi) measures

the difference in average risk assessments across groups given Yi(1) = 1.

Example 5 (Bounded group loss). For β0(Xi), β1(Xi) as defined in Example 1, the risk assessment

s(Xi) violates bounded group accuracy, MSE, or cross-entropy for some ε > 0 if either perfg(s;β) ≥ ε

for g ∈ {0, 1} (e.g., Agarwal, Dud́ık and Wu, 2019).
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2.2 The mean outcome sensitivity model

Since Yi(1) is only observed under intervention Di = 1, the target regression µ∗(x) and predictive per-

formance measures perf(s;β),perf+(s;β) are not point identified without further assumptions. Rather

than assuming the historical decisions were unconfounded, we propose an interpretable relaxation that

we call the mean outcome sensitivity model (MOSM). Under the MOSM, the user bounds the extent

to which the outcome Yi(1) could be affected by unmeasured confounders on average.

Let δ(Xi) := P(Yi(1) = 1 | Di = 0, Xi) − P(Yi(1) = 1 | Di = 1, Xi) denote the difference in the

probability Yi(1) = 1 given Di = 0 and Di = 1 conditional on Xi. Since Yi(1) is unobserved if Di = 0,

neither P(Yi(1) = 1 | Di = 0, Xi) nor δ(Xi) is identified. The mean outcome sensitivity model specifies

pointwise bounds on the difference δ(Xi).

Assumption 2.1 (Mean outcome sensitivity model). There exists bounding functions δ(x), δ(x) : X →
[−1, 1] satisfying E[µ1(Xi) + π0(Xi)δ(Xi)] > 0 and

δ(x) ≤ δ(x) ≤ δ(x) for all x ∈ X . (4)

Let ∆ be the set of all functions δ(·) satisfying (4), and write δi := δ(Xi), δi := δ(Xi).
4

In the consumer lending setting, the MOSM bounds how much the probability of default may

differ among applicants that were not granted a loan relative to observably similar applicants that were

granted a loan. In the pretrial release example, the MOSM bounds how much the failure to appear

rate may differ between observably similar detained defendants and released defendants. The MOSM

nests the assumption of no unmeasured confounding by setting δ(x) = δ(x) = 0 for all x.

2.3 Choice of bounding functions

The choice of bounding functions δ(·), δ(·) is crucial to the specification of the MOSM. We provide a

few examples of how users may specify these bounds in practice.

Stratified outcome bounds: The user may specify the bounding functions by discretizing the

feature space into strata, and then using domain knowledge to directly specify outcome bounds within

each stratum.

Suppose that for some known stratification function κ(·) : X → {1, . . . ,K} and constants δk, δk for

k = 1, . . . ,K, the bounding functions further satisfy

δ(x) = δκ(x) and δ(x) = δκ(x) for all x ∈ X . (5)

Let ∆(κ) be the set of all functions δ(·) that satisfy (5). The stratification function κ(x) describes the

user’s domain-specific knowledge about which coarse strata summarize how unobserved confounders

affect the outcome Yi(1) on average. In the consumer lending example, it may be that most of the

variation in difference of default rates between rejected and approved applicant’s is summarized by small

4By placing bounds on the difference in the probability Yi(1) = 1 between Di = 0 and Di = 1 conditionally on Xi,
the MOSM can be seen as the covarate-conditional generalization of the bounding approach taken in Luedtke, Diaz and
van der Laan (2015) for average treatment effects. While covariates have been previously used in the sensitivity model of
Brumback et al. (2004), they made parametric assumptions that our approach avoids.
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set of known income or wealth brackets.5 In the pretrial release example, much of the variation in the

difference of failure to appear rates between released and detained defendants may be summarized by

the arresting charge category (e.g., violent vs. non-violent charges).

Nonparametric outcome regression bounds: The user may wish to avoid having to specify a

particular choice of strata, and instead place bounds directly in terms of the true, nonparametric

outcome regression µ1(x). Our framework allows the user to specify rich bounds of this form. For some

choices Γ,Γ > 0, define

δ(x) = (Γ− 1)µ1(x), and δ(x) =
(
Γ− 1

)
µ1(x). (6)

Let ∆(Γ) denote the set of bounding functions δ(·) that satisfies these bounds.6

This choice implies that P(Yi(1) = 1 | Di = 0, Xi) cannot be too different than the outcome

regression µ1(x), and satisfies Γµ1(x) ≤ P(Yi(1) = 1 | Di = 0, Xi) ≤ Γµ1(x). In the pretrial release

example, setting Γ = 2 and Γ = 3 implies we are willing to assume that detained defendants are no less

risky than released defendants, but simultaneously they cannot be more than twice as risky as released

defendants. Rambachan (2021) refers to such an assumption as “direct imputation,” and it generalizes

common strategies used to evaluate risk assessment tools in the criminal justice system. For example,

Kleinberg et al. (2018), and Jung et al. (2020a) report results by assuming that the unobserved failure

to appear rate among detained defendants is equal to some known function of the observed failure to

appear rate among released defendants. As we show in Section 8, nonparametric outcome regression

bounds are equivalent to common models for sensitivity analysis on unobserved confounding such as

marginal sensitivity models.

Instrumental variable bounds: The existence of an instrumental variable that generates random

variation in historical interventions implies the MOSM (Manski, 1994; Balke and Pearl, 1997). Such

instrumental variables are common in settings where risk assessments are deployed. A classic example

arises through the random assignment of judges to cases in the pretrial release system (e.g., Kleinberg

et al., 2018; Arnold, Dobbie and Hull, 2020b,a; Rambachan, 2021), where an observed judge identifier

is an instrument Zi for the historical release decision Di.
7,8

Proposition 2.1. Suppose Oi = (Xi, Zi, Di, Yi) ∼ P (·) i.i.d. for i = 1, . . . , n, where Zi ∈ Z has finite

support and satisfies (Yi(0), Yi(1)) ⊥ Zi | Xi. Define δz(x) = (E[YiDi | Xi = x, Zi = z]− µ1(x)) /π0(x)

5The choice of stratification function relates to reject inference procedures used by industry practitioners in consumer
finance (e.g., see Hand and Henley, 1993; Zeng and Zhao, 2014), which apply coarse adjustments to observed default rates
among accepted applicants to impute the missing default rates among rejected applicants.

6Nonparametric outcome regression bounds can be combined with stratified outcome bounds. For example, for strat-
ification function κ(·) and constants Γk,Γk for k = 1, . . . ,K, the user may assume δ(x) = Γκ(x)µ1(x), Γκ(x)µ1(x) for all
x ∈ X .

7Lakkaraju et al. (2017) propose a “contraction procedure” that uses the random assignment of decision-makers to
evaluate the performance of a risk assessments in the presence of unobserved confounding. Contraction only delivers point
estimates of the failure rate of the risk assessment (see Example 1) at particular choices of threshold τ . In contrast, we
sharply bound δ(x) using an instrument, which in turn enables the user to construct sharp bounds on the target regression,
any overall predictive performance measure perf(s;β) or any class-specific performance measure perf+(s;β), perf−(s;β).

8In related work, Qiu et al. (2021) and Pu and Zhang (2021) analyze optimal individual assignment rules when there
exists a binary instrumental variable for past decisions. By establishing that the existence of such an instrumental variable
implies the MOSM, our results enable users to bound the target regression, develop robust recommendation rules, and
bound predictive performance of a given risk score.

8



and δz(x) = (π0(x, z) + E[YiDi | Xi = x, Zi = z]− µ1(x)) /π0(x) for any z ∈ Z. Then, for all x ∈ X ,

δz(x) ≤ δ(x) ≤ δz(x).

Let ∆(z) denote the set of bounding functions δ(·) satisfying these bounds for some z ∈ Z.

2.4 Sharp bounds on the target regression and predictive performance measures

The target regression and predictive performance measures are bounded under the MOSM, and we

next derive their sharp bounds.

Observe that the target regression can be written as µ∗(x) = µ1(x) + π0(x)δ(x). We can therefore

rewrite the predictive performance measures for a given risk assessment as

perf(s;β) = E[β0,i + β1,iµ1(Xi) + β1,iπ0(Xi)δ(Xi)] (7)

perf+(s;β) = E[µ1(Xi) + π0(Xi)δ(Xi)]
−1E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi)] (8)

Define H(µ∗(x); ∆) = {m : m(x) = µ1(x) + δ(x)π0(x) for δ ∈ ∆} to be the set of all target regression

values consistent with the MOSM. Analogously, defineH(perf(s;β); ∆) = {perf(s;β) satisfying (7) for δ ∈
∆} and H(perf+(s;β); ∆) = {perf+(s;β) satisfying (8) for δ ∈ ∆}. The sharp set of target regression

values and predictive performance measures that are consistent with the MOSM can be characterized

by closed intervals.

Lemma 2.1. Suppose Assumption 2.1 is satisfied. Then,

H(µ∗(x); ∆) =
[
µ∗(x; ∆), µ∗(x; ∆)

]
for all x ∈ X ,

H(perf(s;β); ∆) =
[
perf(s;β,∆), perf(s;β,∆)

]
,

H(perf+(s;β); ∆) =
[
perf

+
(s;β,∆), perf+(s;β,∆)

]
,

where µ∗(x; ∆) = µ1(x) + π0(x)δ(x), µ∗(x; ∆) = µ1(x) + π0(x)δ(x), and

perf(s;β,∆) = E[β0,i + β1,iµ1(Xi) + β1,iπ0(Xi)
(
1{β1,i > 0}δi + 1{β1,i ≤ 0}δi

)
],

perf(s;β,∆) = E[β0,i + β1,iµ1(Xi) + β1,iπ0(Xi)
(
1{β1,i ≤ 0}δi + 1{β1,i > 0}δi

)
],

perf+(s;β,∆) = sup
δ(·)∈∆

E[µ1(Xi) + π0(Xi)δ(Xi)]
−1E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi)],

perf
+

(s;β,∆) = inf
δ(·)∈∆

E[µ1(Xi) + π0(Xi)δ(Xi)]
−1E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi)].

In Appendix C, we derive bounds on the predictive disparities of the risk assessment s(Xi) under the

MOSM.

3 Estimating the target regression bounds under the mean outcome

sensitivity model

In this section, we propose estimators for the bounds [µ∗(x; ∆), µ∗(x; ∆)] on the target regression under

the MOSM. Following the heterogeneous treatment effects literature (e.g., Künzel et al., 2019; Nie and
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Wager, 2020; Kennedy, 2022b), we refer to our estimators as “DR-Learners” since they incorporate a

doubly-robust style bias correction in the second-stage regression and their construction is agnostic to

the user’s choice of nonparametric regression method through its use of sample splitting. By extending

the analysis of pseudo-outcome regressions in Kennedy (2022b), we derive the integrated mean square

error convergence rate of our DR-Learners to the true bounds.

We first develop our estimators for the case in which the bounding functions δ(·), δ(·) are known.

We then extend to the case in which the bounding functions themselves must be estimated using

nonparametric outcome regression bounds and instrumental variable bounds.

3.1 DR-Learners for MOSM bounds on the target regression

To construct our proposed estimators for the bounds [µ∗(x; ∆), µ∗(x; ∆)], we make use of sample-

splitting. We illustrate our procedure by a single split procedure to simplify notation, but the analysis

for multiple splits is straightforward.

We randomly split the dataO into two disjoint subsetsO1 andO2. We construct an estimator of the

outcome regression µ̂1 and propensity score π̂1 using only the observations O1. Using the observations

O2, we construct the pseudo-outcomes

φ1(Yi; η̂) + δ(Xi)(1−Di) and φ1(Yi; η̂) + δ(Xi)(1−Di), (9)

where φ1(Yi; η) := µ1(Xi) + Di
π1(Xi)

(Yi − µ1(Xi)) is the efficient uncentered influence function for

E{E[Yi | Di = 1, Xi]}, η = (π1(Xi), µ1(Xi)) are the relevant nuisance functions. We regress these con-

structed pseudo-outcomes on the features Xi using a user-specified nonparametric regression procedure

in fold O2. This yields the DR-Learners µ̂(x; ∆), µ̂(x; ∆) of the target regression bounds under the

MOSM. Algorithm 1 summarizes the construction of the DR-Learners.

Algorithm 1: Pseudo-algorithm for DR-Learners of MOSM target regression bounds.

Input: Data O = {(Oi)}ni=1 where Oi = (Xi, Di, Yi), number of folds K; x ∈ X .
1 Split O into two independent folds O1,O2.
2 Estimate µ̂1, π̂1 using only O1, and define η̂ = (π̂1, µ̂1).
3 Regress φ1(Yi; η̂) + δ(Xi)(1−Di) ∼ Xi using i ∈ O2 to yield µ̂(x; ∆).

4 Regress φ1(Yi; η̂) + δ(Xi)(1−Di) ∼ Xi using i ∈ O2 to yield µ̂(x; ∆).

Output: Estimated bounds [µ̂(x; ∆), µ̂(x; ∆)].

3.2 Convergence rate of DR-Learners

We provide a theoretical guarantee on the integrated mean square error (MSE) convergence rate of

the DR-Learners µ̂(x; ∆), µ̂(x; ∆) to the true bounds. Our result compares the integrated MSE of the

DR-Learners against that of an oracle nonparametric regression that has access to the true nuisance

functions and can therefore form the true influence functions.

Consider an oracle that observes the true nuisance functions η(Xi) and bounding functions δ(Xi), δ(Xi)

for each observation in the data. This infeasible oracle estimates the target regression bounds at any

x ∈ X by regressing the true pseudo-outcomes φ1(Yi; η) + δ(Xi)(1−Di) and φ1(Yi; η) + δ(Xi)(1−Di)

on the features Xi in the second fold using the same second-stage nonparametric regression procedure
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as the user. Let µ̂
oracle

(x; ∆), µ̂oracle(x; ∆) denote these oracle estimators. Under an L2(P)-stability

condition on the user’s second-stage nonparametric regression estimator, the integrated MSE of the DR-

Learner equals the integrated MSE of the oracle regression plus a smoothed, doubly robust remainder

term.

Theorem 3.1. Let Ên[· | Xi = x] denote the user-specified, second-stage pseudo-outcome regression

estimator. Suppose that Ên[· | Xi = x] satisfies the L2(P)-stability condition (Assumption B.1), and

P(ε ≤ π̂1(Xi) ≤ 1 − ε) = 1 for some ε > 0. Define R̃(x) = Ên[(π1(Xi) − π̂1(Xi))(µ1(Xi) − µ̂1(Xi)) |
Xi = x], and R2

oracle = E[‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖2]. Then,

‖µ̂(·; ∆)− µ∗(·; ∆)‖ ≤ ‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖+ ε−1‖R̃(·)‖+ oP(Roracle)

and µ̂(·; ∆) is therefore oracle efficient in the L2(P)-norm if further ‖R̃(·)‖ = oP(Roracle). The analogous

result holds for the estimator of the lower-bound, µ̂∗(x; ∆).

Theorem 3.1 establishes that the integrated MSE of the DR-Learners for the target outcome regression

bounds can be no larger than that of an infeasible oracle nonparametric regression (i.e., an oracle that

has access to the true nuisance functions and bounding functions) plus the L2(P)-norm of a smoothed

remainder term R̃(x) that depends on the product of errors in the estimation of the first-stage nuisance

functions. The first-step, nonparametric estimation of the nuisance functions in the DR-Learners

therefore only its error through this remainder term. Key to this bound is that the DR-Learners (i)

use sample-splitting, estimating the nuisance parameters µ1(Xi) and π1(Xi) on a separate fold of the

data than the fold used for the pseudo-outcome regression, and (ii) construct pseudo-outcomes based

on efficient influence functions. To prove this result, we prove an oracle inequality on the L2(P)-error

of regression with estimated pseudo-outcomes (Lemma B.1), extending Kennedy (2022b)’s analysis of

the pointwise convergence of pseudo-outcome regression procedures.

The L2(P)-stability condition (Assumption B.1) on the second-stage regression estimators is quite

mild in practice, and Proposition B.1 shows that it is satisfied by a variety of generic linear smoothers

such as linear regression, series regression, nearest neighbor matching, random forest models, and

several others. The bounds in Theorem 3.1 are therefore agnostic to the underlying nonparametric

regression method chosen by the user. As a result, the result can be easily applied in settings where

the nuisance functions η(·) and bounding functions δ(·), δ(·) themselves satisfy additional smoothness

or sparsity conditions, and for particular choices of the second-stage regression estimator Ên[· | Xi = x]

and nuisance function estimators. Known results on the mean-squared error convergence rates of

nonparametric regression procedures can then be applied to analyze ‖µ̂oracle(·; ∆) − µ∗(·; ∆)‖ and

‖R̃(·)‖. Applying Theorem 3.1 would then provide the convergence rate of our proposed DR-Learners

as an explicit function of the sample size and dimensionality of the features.

3.3 Incorporating estimated bounding functions under MOSM

We now show how to extend our proposed DR-Learners when the user must also estimate the bounding

functions δ(·), δ(·). The main conclusions of Theorem 3.1 continue to hold with additional remainder

terms that arise from the nonparametric estimation of the bounding functions.
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Nonparametric outcome bounds: Suppose the user specifies nonparametric outcome regression

bounds under the MOSM (6) for some Γ,Γ > 0. In this case, the worst-case bounds on the target

regression can be directly written as µ(x; ∆(Γ)) = µ1(x) + (Γ− 1)π0(x)µ1(x) and µ∗(x) = µ1(x) + (Γ−
1)π0(x)µ1(x). We therefore modify our DR-Learners by simply modifying the pseudo-outcomes. Using

the observations in O2, we now construct the two pseudo-outcomes φ1(Yi; η̂)+(Γ−1)φ(π0(Xi)µ1(Xi); η̂)

and φ1(Yi; η̂) + (Γ− 1)φ(π0(Xi)µ1(Xi); η̂), where

φ(π0(Xi)µ1(Xi); η) = ((1−Di)− π0(Xi))µ1(Xi) +
Di

π1(Xi)
(Yi − µ1(Xi))π0(Xi) + π0(Xi)µ1(Xi) (10)

is the efficient influence function for E[π0(Xi)µ1(Xi)] by standard influence function calculations (Kennedy,

2022a; Hines et al., 2022). Regressing these constructed pseudo-outcomes on the features Xi yields our

DR-Learners µ̂(x; ∆(Γ)), µ̂(x; ∆(Γ)).

Under the same conditions as Theorem 3.1, the integrated MSE of these DR-Learners is equal to

the integrated MSE of the oracle estimators plus the same second-order remainder term.

Proposition 3.1. Under the same conditions as Theorem 3.1,

‖µ̂(·; ∆(Γ))− µ∗(·; ∆(Γ))‖ ≤ ‖µ̂oracle(·; ∆(Γ))− µ∗(·; ∆(Γ))‖+ ε−1
√

Γ− 1‖R̃(·)‖+ oP(Roracle)

The analogous result holds for µ̂(x; ∆(Γ)).

Instrumental variable bounds: Suppose the user specifies instrumental variable bounds under the

MOSM. To derive the worst-case bounds on the target regression, it is convenient to rewrite Proposition

2.1 as bounds on the product π0(x)δ(x)

δz(x) ≤ π0(x)δ(x) ≤ δz(x)

for δz(x) = E[YiDi | Xi = x, Zi = z] − µ1(x) and δz(x) = π0(x, z) + E[YiDi | Xi = x, Zi = z] − µ1(x).

It then immediately follows the target regression bounds can be directly written as µ∗(x; ∆(z)) =

π0(x, z) + E[YiDi | Xi = x, Zi = z] and µ∗(x; ∆(z)) = E[YiDi | Xi = x, Zi = z]. This suggests that we

can modify our DR-Learners by modifying the nuisance functions that are estimated on each fold of

the data and the pseudo-outcomes that are constructed.

We now construct an estimator of the regression Ê[YiDi | Xi = x, Zi = z], treatment propensity

score π̂0(x, z), and instrument propensity score P̂[Zi = z | Xi = x] using only the observations O1.

Using the observations O2, we construct the two pseudo-outcomes φz(YiDi; η̂) + φz(1 − Di; η̂) and

φz(YiDi; η̂), where

φz(DiYi; η) :=
1{Zi = z}

P(Zi = z | Xi = x)
(YiDi − E[DiYi | Xi = x, Zi = z]) + E[DiYi | Xi = x, Zi = z] (11)

φz(1−Di; η) :=
1{Zi = z}

P(Zi = z | Xi = x)
((1−Di)− π0(Xi, z)) + π0(Xi, z) (12)

are the efficient influence functions for E{E[DiYi | Xi, Zi = z]}, E{E[1−Di | Xi, Zi = z]} respectively,

where η = (P(Zi = z | Xi = x),E[DiYi | Xi = x, Zi = z], π0(x, z)) are the relevant nuisance functions
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(Kennedy, Balakrishnan and G’Sell, 2020). We then regress these constructed pseudo-outcomes on the

features Xi, yielding our DR-Learners µ̂(x; ∆(z)), µ̂(x; ∆(z)).

Proposition 3.2. Suppose the second-stage pseudo-outcome regression estimators Ên[· | Xi = x] satisfy

the L2(P)-stability condition (Assumption B.1) and P(ε ≤ P̂(Zi = z | Xi = x)) = 1 for some ε > 0.

Define R̃1(x) = Ên[(P(Zi = z | Xi = x) − P̂(Zi = z | Xi = x))(π0(x, z) − π̂0(x, z)) | Xi = x],

R̃2(x) = Ên[(P(Zi = z | Xi = x)− P̂(Zi = z | Xi = x))(E[DiYi | Zi = z,Xi = x]− Ê[DiYi | Zi = z,Xi =

x]) | Xi = x], and R2
oracle(z) = E[‖µ̂(·; ∆(z))− µ∗(·; ∆(z))‖2]. Then,

‖µ̂(·; ∆(z))− µ(·; ∆(z))‖ ≤ ‖µ̂oracle(·; ∆(z))− µ(·; ∆(z))‖+ ε−1
(
‖R̃1(·)‖+ ‖R̃2(·)‖

)
+ oP(Roracle(z)).

The analogous result holds for the estimator of the lower bound µ̂(x; ∆(z)).

4 Robust recommendations under the mean outcome sensitivity model

While in some settings a risk assessment alone is sufficient, in many others decision makers must

translate the risk assessment into an intervention. We show how our proposed DR-Learners for the

bounds on the target regression under the MOSM can be translated into a plug-in decision-making

policy that has desirable robustness properties. We bound the worst-case performance of our plug-

in decision-making policy relative to the max-min optimal decision rule. Our results for the DR-

Learner (Theorem 3.1) then imply conditions under which our estimated decision-making policy is

asymptotically max-min optimal.

4.1 Expected counterfactual utility and optimal max-min decision policies

We consider a setting in which a decision maker selects a deterministic personalized decision-making

policy d(·) : X → {0, 1} mapping features into recommendations for whether the intervention Di = 1

should be implemented. We assume the decision maker prefers to provide the intervention Di = 1 only

when Yi(1) = 0, and so they evaluate d(Xi) by its expected counterfactual utility

U(d) := E[(−u1,1(Xi)Yi(1)+u1,0(Xi)(1−Yi(1)))d(Xi)+(−u0,0(Xi)(1−Yi(1))+u0,1(Xi)Yi(1))(1−d(Xi))],

where the utility functions u1,1(·), u1,0(·), u0,0(·), u0,1(·) ≥ 0 specify the known payoff associated with

each possible combination of decision Di and counterfactual outcome Yi(1) at features Xi. We assume

the utility functions satisfy the normalization
∑

d,y∈{0,1}2 ud,y(x) = 1 with probability one.

This objective function is quite general, and arises naturally in our earlier running examples. In

the consumer lending example, the profitability of approving customers that would not default u1,0(·)
may vary based on observed features such as the requested loan size. Analogously, in pretrial release,

the benefits of releasing defendants that would not fail to appear in court u0,1(Xi) may vary based on

observable features such as the defendant’s age, charge severity, or prior history of pretrial misconduct.

While the expected counterfactual utility of a decision rule d(Xi) is not point identified due to the

missing data problem, it is nonetheless bounded under the MOSM. By iterated expectations, it equals

U(d) = E[(−u1,1,iµ
∗(Xi)+u1,0,i(1−µ∗(Xi)))d(Xi)+(−u0,0,i(1−µ∗(Xi))+u0,1,iµ

∗(Xi))(1−d(Xi))], (13)

where ud,y,i := ud,y(Xi) for (d, y) ∈ {0, 1}2. For any d(Xi), we can directly characterize the sharp set

13



of expected counterfactual utilities H(U(d); ∆) consistent with the MOSM.

Lemma 4.1. Suppose Assumption 2.1 is satisfied. Then, for any decision rule d(·) : X → {0, 1},
H(U(d); ∆) = [U(d; ∆), U(d; ∆)], where

U(d; ∆) := E[(u1,0,i − (u1,1,i + u1,0,i)µ
∗(Xi; ∆)) d(Xi) +

(
−u0,0,i + (u0,0,i + u0,1,i)µ

∗(Xi; ∆)
)

(1− d(Xi))]

U(d; ∆) := E[
(
u1,0,i − (u1,1,i + u1,0,i)µ

∗(Xi; ∆)
)
d(Xi) + (−u0,0,i + (u0,0,i + u0,1,i)µ

∗(Xi; ∆)) (1− d(Xi))].

Since the expected counterfactual utility of any decision policy can only be sharply bounded under

the MOSM, the decision maker must address this inherent ambiguity (e.g., Manski, 2007). We assume

the decision maker selects a decision policy to solve

d∗(·; ∆) ∈ arg max
d(·) : X→[0,1]

U(d; ∆). (14)

The decision maker therefore compares decision policies based on their worst-case performance. In

defining the optimal max-min decision rule d∗(·; ∆), we place no restrictions on the class of decision

rules.9,10 Given the structure of the sharp lower bound on expected counterfactual utility, the optimal,

max-min decision rule thresholds a weighted average of the target regression bounds under the MOSM.

Lemma 4.2. Define µ̃∗(x; ∆) = (u1,1,i + u1,0,i)µ
∗(x; ∆) + (u0,0,i + u0,1,i)µ

∗(x; ∆) the utility weighted-

average of the target regression bounds. The optimal max-min decision rule is

d∗(Xi; ∆) = 1{µ̃∗(Xi; ∆) ≤ u1,0,i + u0,0,i}.

Since the target regression bounds [µ∗(Xi), µ
∗(Xi)] are not known exactly, the optimal max-min decision

rule is infeasible. We therefore next consider the performance of a plug-in version based on our DR-

Learners for the target regression bounds.

4.2 Regret bounds for the plug-in max-min decision policy

Using our DR-Learners for the target regression bounds, we consider a plug-in version of the optimal

max-min decision rule under the MOSM. Define ̂̃µ(x; ∆) = (u1,1,i+u1,0,i)µ̂(x; ∆)+(u0,0,i+u0,1,i)µ̂(x; ∆)

to be the estimator of µ̃∗(x; ∆) at x ∈ X that plugs in our DR-Learners for the target regression bounds.

The plug-in decision rule is

d̂(x; ∆) = 1{̂̃µ(x; ∆) ≤ u1,0,i + u0,0,i}. (15)

How much worse does the decision-maker do if she makes decisions under this plug-in decision

rule rather than the optimal max-min decision rule? To do so, we define regret of the feasible, plug-in

9This contrasts with recent work on statistical treatment assignment rules such as Kitagawa and Tetenov (2018); Athey
and Wager (2021); Kallus and Zhou (2021), which typically compares estimated decisions rules against the best decision
rule in some restricted policy class.

10In related work, Ben-Michael, Imai and Jiang (2022) study optimal policy learning in a setting where utility depends
on both the decision Di and the full potential outcome vector (Yi(0), Yi(1)) (i.e., is “assymmetric”) and the decision is
unconfounded in the historical data. Ben-Michael et al. (2021) and Zhang, Ben-Michael and Imai (2022) also study optimal
policy learning in settings where treatment effects can only be bounded since, respectively, the historical decision-making
policy may be deterministic or there exists a historical regression discontinuity in decisions.
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decision rule relative to the max-min optimal decision rule as

R(d̂; ∆) = U(d∗; ∆)− U(d̂; ∆). (16)

Notice that R(d̂; ∆) ≥ 0, and it measures the difference between the worst-case expected counterfactual

utility of the max-min optimal decision rule against what is attained by the feasible plug-in decision

rule. Our next result derives bounds on the squared regret of the plug-in decision rule.

Theorem 4.1. Under the same conditions as Theorem 3.1, for R̃(x) = Ên[(π1(Xi)− π̂1(Xi))(µ1(Xi)−
µ̂1(Xi)) | Xi = x],

R(d̂; ∆)2 ≤ 2‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖+ 2‖µ̂
oracle

(·; ∆)− µ∗(·; ∆)‖+ 4ε−1‖R̃(x)‖+ oP(Roracle)

Theorem 4.1 shows that the squared regret of the plug-in decision rule is bounded above by the oracle

integrated MSE for the target regression bounds plus again a smoothed, doubly robust remainder term

that depends on the smoothed product of errors in the estimation of the first-stage nuisance parameters.

There are a few points to emphasize about this bound. First, it compares the lower bound on expected

counterfactual utility of the feasible decision rule against the unrestricted, max-min optimal decision

rule. Second, this result immediately implies that the worst-case regret of the plug-in decision rule will

converge to zero whenever the integrated MSE of the oracle converges to zero (and therefore so does the

integrated MSE of the DR-Learners). In such a case, the plug-in decision rule would be asymptotically

max-min optimal.

5 Robust audits under the mean outcome sensitivity model

Finally, in this section, we robustly audit the performance of an existing risk assessment s(Xi) by

constructing estimators of its worst-case predictive performance perf(s;β,∆), perf+(s;β,∆) under the

MOSM. Our proposed estimators are based on efficient influence functions and cross-fitting, which will

enable us to control bias from the nonparametric estimation of nuisance functions and allow the use

of complex machine learning estimator for these nuisance functions (e.g., Robins et al., 2008; Zheng

and van der Laan, 2011; Chernozhukov et al., 2018). As for the DR-Learners, we first develop our

estimators for the case in which the bounding functions δ(·), δ(·) are known, and then extend to the

case in which the bounding functions themselves must be estimated.

5.1 Estimating bounds on overall predictive performance

We first estimate the bounds on overall predictive performance perf(s;β,∆), perf(s;β,∆) of a risk

assessment s(Xi) under the MOSM. As in the construction of the DR-Learners, φ1(Yi; η) denotes the

efficient influence function for E{E[Yi | Di = 1, Xi]} and η := (π1(Xi), µ1(Xi)).

We randomly split the historical data into K folds, letting Ok denote the observations in the k-th

fold and O−k denote the observations not in the k-th fold. For each fold k, we construct estimators of

the nuisance functions η̂−k using only the sample of observations O−k not in the k-th fold. For each
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observation in the k-th fold Ok, we construct

perf(Oi; η̂−k) := β0,i + β1,iφ1(Yi; η̂−k) + β1,i(1−Di)(1{β1,i > 0}δi + 1{β1,i ≤ 0}δi), (17)

perf(Oi; η̂−k) := β0,i + β1,iφ1(Yi; η̂−k) + β1,i(1−Di)(1{β1,i ≤ 0}δi + 1{β1,i > 0}δi). (18)

We then estimate the upper-bound on overall predictive performance under the MOSM by taking the

average across all units in the historical data O, or equivalently the weighted average of the correspond-

ing fold-specific estimators

p̂erf(s;β,∆) := En
[
perf(Oi; η̂−Ki)

]
=

K∑
k=1

(
n−1

n∑
i=1

1{Ki = k}

)
Ekn
[
perf(Oi; η̂−k)

]
, (19)

where Ekn[·] denotes the sample average over the k-th fold Ok. Our estimator for the lower-bound

p̂erf(s;β,∆) := En
[
perf(Oi; η−Ki)

]
is defined analogously. Algorithm 2 summarizes our proposed esti-

mators for the overall predictive performance bounds under the MOSM and their associated standard

errors.

Algorithm 2: Pseudo-algorithm for overall predictive performance bounds estimators.

Input: Data O = {(Oi)}ni=1 where Oi = (Xi, Di, Yi), number of folds K.
1 for k = 1, . . . ,K do
2 Estimate η̂−k = (π̂1,−k, µ̂1,−k).

3 Set perf(Oi; η̂−K(i)) and perf(Oi; η̂−K(i)) for all i ∈ Ok.

4 Set p̂erf(s;β,∆) = En[perf(Oi; η̂−K(i))], p̂erf(s;β,∆) = En[perf(Oi; η̂−K(i))];

5 Set σ̂i,11 = (perf(Oi; η̂−K(i))− p̂erf(s;β,∆))2,

σ̂i,12 = (perf(Oi; η̂−K(i))− p̂erf(s;β,∆))(perf(Oi; η̂−K(i))− p̂erf(s;β,∆)), and

σ̂i,22 = (perf(Oi; η̂−K(i))− p̂erf(s;β,∆))2;

Output: Estimates p̂erf(s;β,∆) = En[perf(Oi; η̂−K(i))], p̂erf(s;β,∆) = En[perf(Oi; η̂−K(i))].

Output: Estimated covariance matrix n−1
∑n

i=1

(
σ̂i,11 σ̂i,12

σ̂i,12 σ̂i,22

)

Our next theorem derives the rate of convergence of our proposed estimators of the bounds, and

provides conditions under which they are jointly asymptotically normal.

Theorem 5.1. Define the remainder Rk1,n := ‖µ̂1,−k(·) − µ1(·)‖‖π̂1,−k(·) − π1(·)‖ for each fold k =

1, . . . ,K. Assume (i) P(π1(Xi) ≥ δ) = 1 for some δ > 0, (ii) there exists ε > 0 such that P(π̂1,−k(Xi) ≥
ε) = 1 for each fold k, and (iii) ‖µ̂1,−k(·)− µ1(·)‖ = oP (1) and ‖π̂1,−k(·)− π1(·)‖ = oP (1) for each fold

k. Then,

∣∣∣p̂erf(s;β,∆)− perf(s;β,∆)
∣∣∣ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
,

∣∣∣p̂erf(s;β,∆)− perf(s;β,∆)
∣∣∣ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
.
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If further Rk1,n = oP(1/
√
n) for each fold k, then

√
n

((
p̂erf(s;β,∆)

p̂erf(s;β,∆)

)
−

(
perf(s;β,∆)

perf(s;β,∆)

))
d−→ N (0,Σ)

for covariance matrix Σ defined in the proof.

Theorem 5.1 establishes that the errors associated with our estimators of the bounds on overall pre-

dictive performance under the MOSM consists of fold-specific doubly robust remainders Rk1,n that will

be small if either the propensity score or the outcome regression are estimated well. Furthermore, the

rate condition required for our proposed estimators of the bounds to be asymptotically normal will

be satisfied if all nonparametric estimators of the nuisance parameters converge at a rate faster than

OP(n−1/4), which is the familiar condition required on first-stage nuisance parameter estimators from

the double/debiased machine learning (e.g., Robins et al., 2008; Zheng and van der Laan, 2011; Cher-

nozhukov et al., 2018). The user can therefore use a wide-suite of nonparametric regression methods

or modern machine learning based methods to construct the first-stage nuisance parameter estimators.

In Appendix C, we construct a consistent estimator of the asymptotic covariance matrix in Theorem

5.1. As a consequence, the user can conduct statistical inference by reporting asymptotically valid

confidence intervals for either the upper bound or lower bound on overall predictive performance.

The joint normality of our estimators of the bounds combined with the consistent estimator of the

asymptotic covariance matrix also imply that researchers can construct confidence intervals for the

sharp identified set H(perf(s;β,∆) using standard methods for inference under partial identification

(e.g., Imbens and Manski, 2004; Stoye, 2009).

In Appendix C, we also develop estimators for the bounds on the overall predictive disparities of

the risk assessment s(Xi) under the MOSM. We again show that these estimators converge at a fast

rate, and are asymptotically normally distributed.

5.1.1 Incorporating estimated bounding functions under MOSM

We now extend our proposed estimators of the bounds on overall predictive performance when the user

must also estimate the bounding functions δ(·), δ(·). Provided that the nonparametric estimators for

the appropriate nuisance functions converge at a sufficiently fast rate, the main conclusions of Theorem

5.1 continue to hold.

Nonparametric outcome bounds: Suppose the user specifies nonparametric outcome regression

bounds under the MOSM (6) for some Γ,Γ > 0. In this case, the worst-case bounds on overall predictive

performance can be directly written as

perf(s;β,∆(Γ)) = E[β0,i + β1,iµ1(Xi) + β1,i

(
1{β1,i > 0}(Γ− 1) + 1{β1,i ≤ 0}(Γ− 1)

)
π0(Xi)µ1(Xi)]

perf(s;β,∆(Γ)) = E[β0,i + β1,iµ1(Xi) + β1,i

(
1{β1,i ≤ 0}(Γ− 1) + 1{β1,i > 0}(Γ− 1)

)
π0(Xi)µ1(Xi)].
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We therefore can directly extend our proposed estimators by simply instead constructing

perf(Oi; η̂−k) := β0,i + β1,iφ1(Yi; η̂−k) + β1,i

(
1{β1,i > 0}(Γ− 1) + 1{β1,i ≤ 0}(Γ− 1)

)
φ(π0(Xi)µ1(Xi); η̂−k),

perf(Oi; η̂−k) := β0,i + β1,iφ1(Yi; η̂−k) + β1,i

(
1{β1,i ≤ 0}(Γ− 1) + 1{β1,i > 0}(Γ− 1)

)
φ(π0(Xi)µ1(Xi); η̂−k)

for each observation in the k-th fold Ok, where φ(π0(Xi)µ1(Xi); η̂) is the uncentered efficient influence

function for E{π0(Xi)µ1(Xi)} as defined in (10). Our estimators for the worst-case bounds on overall

predictive performance under nonparametric outcome regression bounds are then p̂erf(s;β,∆(Γ)) :=

En[perf(Oi; η̂−Ki)] and p̂erf(s;β,∆(Γ)) := En[perf(Oi; η̂−Ki)]. Under the same conditions as Theorem

5.1, our estimators for the worst-case bounds on overall predictive performance under nonparametric

outcome regression bounds continue to converge quickly to the true bounds.

Proposition 5.1. Suppose the user specifies outcome regression bounds for some Γ,Γ > 0. Under the

same conditions as Theorem 5.1,

∣∣∣p̂erf(s;β,∆(Γ))− perf(s;β,∆(Γ))
∣∣∣ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
,

∣∣∣p̂erf(s;β,∆(Γ))− perf(s;β,∆(Γ))
∣∣∣ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
.

If further Rk1,n = oP(1/
√
n) for all folds k, then

√
n

((
p̂erf(s;β,∆(Γ))

p̂erf(s;β,∆(Γ))

)
−

(
perf(s;β,∆(Γ))

perf(s;β,∆(Γ))

))
d−→ N (0,Σ(Γ))

for covariance matrix Σ(Γ) defined in the proof.

Instrumental variable bounds: Suppose the user specifies instrumental variable bounds under

the MOSM. To derive the worst-case bounds on overall predictive performance, it is again convenient

to first rewrite the IV bounds in Proposition 2.1 as bounds on the product π0(x)δ(x) as δz(x) ≤
π0(x)δ(x) ≤ δz(x) for δz(x) and δz(x) defined earlier in Section 3.3. The worst-bounds on overall

predictive performance are therefore

perf(s;β,∆(z)) = E[β0,i + β1,iµ1(Xi) + β1,i(1{β1,i > 0}δz(Xi) + 1{β1,i ≤ 0}δz(Xi))],

perf(s;β,∆(z)) = E[β0,i + β1,iµ1(Xi) + β1,i(1{β1,i > 0}δz(Xi) + 1{β1,i ≤ 0}δz(Xi))].

Based on this expression, we extend our proposed estimators by constructing

perf(Oi; η̂−k) = β0,i + β1,iφ(Yi; η̂−k) + β1,i(1{β1,i > 0}φ(δz(Xi); η̂−k) + 1{β1,i ≤ 0}φ(δz(Xi); η̂−k))

perf(Oi; η̂−k) = β0,i + β1,iφ(Yi; η̂−k) + β1,i(1{β1,i ≤ 0}φ(δz(Xi); η̂−k) + 1{β1,i > 0}φ(δz(Xi); η̂−k))

for each observation in the k-fold Ok, where φ(δz(Xi); η), φ(δz(Xi); η) are the efficient influence func-

tions for E[δz(Xi)], E[δz(Xi)] respectively, and η are the relevant nuisance functions. Recall that
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efficient influence functions for E[δz(Xi)], E[δz(Xi)] are

φ(δz(Xi); η) = φz(1−Di; η) + φz(DiYi; η)− φ1(Yi; η)

φ(δz(Xi); η) = φz(DiYi; η)− φ1(Yi; η),

where φz(1 −Di; η) and φz(DiYi; η) are the efficient influence functions for E{E[1 −Di | Xi, Zi = z]}
and E{E[DiYi | Xi, Zi = z]} respectively defined in (12) and (11). We therefore define our estimators

for the worst-case bounds on overall predictive performance under the instrumental variable bounds as

p̂erf(s;β,∆(z)) := En[perf(Oi; η̂−Ki)] and p̂erf(s;β,∆(z)) := En[perf(Oi; η̂−Ki ].

We extend Theorem 5.1 to derive the rate of convergence of our proposed estimators under instru-

mental variable bounds.

Proposition 5.2. Define Rk1,n = ‖µ̂1,−k(·)−µ1(·)‖‖π̂1,−k(·)−π1(·)‖ as before, and let Rk2,n = ‖Ê−k[YiDi |
Xi, Zi = z] − E[YiDi | Xi, Zi = z]‖‖P̂−k(Zi = z | Xi) − P(Zi = z | Xi)‖, Rk3,n = ‖π̂0,−k(·, z) −
π0(·, z)‖‖P̂−k(Zi = z | Xi) − P(Zi = z | Xi)‖. Assume that (i) P{P(Zi = z | Xi) ≥ δ} = 1 and

P(π1(Xi) ≥ δ) = 1 for some δ > 0; (ii) there exists ε > 0 such that P{P̂−k(Zi = z | Xi) ≥ ε} = 1 and

P(π̂1−k(Xi) ≥ ε) = 1 for all folds k; and (iii) ‖Ê−k[DiYi | Xi, Zi = z]− E[DiYi | Xi, Zi = z]‖ = oP(1),

‖π̂0,−k(·; z)−π0(·; z)‖ = oP(1), ‖P̂−k(Zi = z | Xi)−P(Zi = z | Xi)‖ = oP(1), ‖µ̂1,−k(·)−µ1(·)‖ = oP(1),

and ‖π̂1,−k(·)− π1(·)‖ = oP(1) for all folds k. Then,

∣∣∣p̂erf(s;β,∆(z))− perf(s;β,∆(z))
∣∣∣ = OP

(
1/
√
n+

K∑
k=1

(Rk1,n +Rk2,n +Rk3,n)

)
∣∣∣p̂erf(s;β,∆(z))− perf(s;β,∆(z))

∣∣∣ = OP

(
1/
√
n+

K∑
k=1

(Rk1,n +Rk2,n +Rk3,n)

)
.

If further Rk1,n = oP(1/
√
n), Rk2,n = oP(1/

√
n), and Rk3,n = oP(1/

√
n) for all folds k, then

√
n

((
p̂erf(s;β,∆(z))

p̂erf(s;β,∆(z))

)
−

(
perf(s;β,∆(z))

perf(s;β,∆(z))

))
d−→ N (0,Σ(z))

for covariance matrix Σ(z) defined in the proof.

5.2 Estimating bounds on positive-class predictive performance

We next consider the problem of estimating the bounds perf
+

(s;β,∆) on positive-class predictive

performance of a risk assessment s(Xi) under the MOSM. Our estimators directly solve the empirical

analogues of the population optimization problems that characterize the sharp bounds given in Lemma

2.1. We will again make use of K-fold cross-fitting. We now explicitly assume n is divisible by K, and

each fold contains n/K observations for simplicity. For each fold k = 1, . . . ,K, we construct estimators

of the nuisance functions η̂−k using only the sample of observations O−k not in the k-th fold. We then

construct a fold-specific estimate of the upper bound by solving

p̂erf
k

+(s;β,∆n) := max
δ̃∈∆n

Ekn[β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δ̃i]

Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i]
, (20)
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where ∆n =
{
δ̃ ∈ Rn : δ(Xi) ≤ δ̃i ≤ δ(Xi) for i = 1, . . . , n

}
. Our estimator then averages these fold-

specific estimates

p̂erf+(s;β,∆n) =
1

K

K∑
k=1

p̂erf
k

+(s;β,∆n). (21)

Analogously, we construct fold-specific estimates of the lower-bound p̂erf
k

+
(s;β,∆) by solving the corre-

sponding minimization problem, and estimate the lower-bound on positive-class predictive performance

as p̂erf
+

(s;β,∆n) = K−1
∑K

k=1 p̂erf
k

+
(s;β,∆). Algorithm 3 summarizes this procedure.

Algorithm 3: Pseudo-algorithm for positive-class predictive performance bounds estimators.

Input: Data O = {(Oi)}ni=1 where Oi = (Xi, Di, Yi), number of folds K.
1 for k = 1, . . . ,K do
2 Estimate η̂−k = (π̂1,−k, µ̂1,−k).

3 Set p̂erf
k

+(s;β,∆n) by solving (20).

4 Set p̂erf
k

+
(s;β,∆n) by solving the corresponding minimization.

Output: Estimates p̂erf+(s;β,∆n) = K−1
∑K

k=1 p̂erf
k

+(s;β,∆),

p̂erf
+

(s;β,∆) = K−1
∑K

k=1 p̂erf
k

+
(s;β,∆n).

At first glance, p̂erf
k

+(s;β,∆n), p̂erf
k

+
(s;β,∆n) may appear to be challenging optimization prob-

lems, but there is important structure to exploit. Since both are linear-fractional programs, they can

be equivalently expressed as linear programs by applying the Charnes-Cooper transformation (Charnes

and Cooper, 1962).

Lemma 5.1. For any fold k, define nk =
∑n

i=1 1{Ki = k}, ĉk = Ekn[(β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δi)],

d̂k = Ekn[(φ1(Yi; η̂−k) + (1 −Di)δi)]. Also define α̂i = β0,i(1 −Di)(δi − δi), γ̂i = (1 −Di)(δi − δi) and

α̂ = (α̂1, . . . , α̂n), γ̂ = (γ̂1, . . . , γ̂n). Then,

p̂erf
k

+(s;β,∆n) = max
Ũ∈Rnk ,Ṽ ∈R

α̂′Ũ + ĉkṼ

s.t. 0 ≤ Ũi ≤ Ṽ for i = 1, . . . nk,

0 ≤ Ṽ, γ̂′Ũ + Ṽ d̂k = 1.

p̂erf
k

+
(s;β,∆n) is optimal value of the corresponding minimization problem.

The calculation of our proposed estimators of the bounds on positive-class predictive performance

simply requires the user to find the solution to K linear programs.

We can further exploit the optimization structure of these estimators in order to analyze their

convergence rates to the true bounds under the MOSM. For exposition, we only derive the convergence

rate for the our estimator of the upper bound p̂erf+(s;β,∆n), but the analogous result applies to

our estimator of the lower bound. As a first step, we show that optimization over the set of bounding

functions ∆ under the MOSM is equivalent to optimization over a special subclass of bounding functions

both in the population and the sample optimization problems. This result exploits the linear-fractional
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structure of the optimizations, and such a reduction has been noted before in other sensitivity analysis

models such as Aronow and Lee (2013); Kallus, Mao and Zhou (2018); Zhao, Small and Bhattacharya

(2019); Kallus and Zhou (2021).

Lemma 5.2. Define U to be the set of monotone, non-decreasing functions u(·) : R → [0, 1], ∆M :={
δ(x) = δ(x) + (δ(x)− δ(x))u(β0(x)) for u(·) ∈ U

}
and ∆M

n =
{

(δ(X1), . . . , δ(Xn)) : δ ∈ ∆M
}

. Then,

perf+(s;β,∆) := sup
δ∈∆M

perf+(s;β, δ),

p̂erf
k

+(s;β,∆n) := max
δ̃∈∆M

n

Ekn[β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δ̃i]

Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i]
for any k.

That is, optimization over the set of ∆ in the MOSM is equivalent to optimization over the class of

monotone, non-decreasing functions on the real line ∆M . Intuitively, the extremal bounding function

that achieves the bounds is either equal to the lower bounding function δ(x) everywhere, the upper

bounding function δ(x) everywhere, or can be represented as a non-decreasing step-function that jumps

from the lower bounding function to the upper bounding function depending on the value of β0,i. Lemma

5.2 establishes this formally. Since the class of functions ∆M is a sufficiently simple function class, we

can apply uniform concentration inequalities to derive the convergence rate of p̂erf(s;β,∆n) to the true

bound under the MOSM.

Theorem 5.2. Define the remainder Rk1,n = ‖µ̂1,k(·) − µ1,k(·)‖‖π̂1,k(·) − π1,k(·)‖ for each fold k =

1, . . . ,K. Assume that (i) there δ > 0 such that P(π1(Xi) ≥ δ) = 1; (ii) there exists ε > 0 such that

P(π̂(Xi) ≥ ε) = 1; and (iii) ‖µ̂1,k(·) − µ1,k(·)‖ = oP (1) and ‖π̂1,k(·) − π1,k(·)‖ = oP (1) for each fold

k = 1, . . . ,K. Then,

∥∥∥p̂erf+(s;β,∆n)− perf+(s;β,∆)
∥∥∥ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
∥∥∥p̂erf

+
(s;β,∆n)− perf+(s;β,∆)

∥∥∥ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
.

Theorem 5.2 shows that the errors associated with our proposed estimators of the bounds on positive-

class predictive performance under the MOSM consist of two remainders. The first remainder R1,n is

the same doubly-robust remainder that we encountered in Theorem 5.1. The use of efficient influence

functions and cross-fitting in the construction of our estimators again means that we can effectively

control bias from the nonparametric estimation of nuisance parameters. The bounded complexity of

∆M implies that we pay no penalty in terms of the rate of convergence for the inherent optimization.

Our proposed estimator continues to converge at fast rates to the true bounds.

Finally, in Appendix C, we also develop estimators for the bounds on the positive-class predictive

disparities of the risk assessment s(Xi) under the MOSM. By a similar argument as given in the proof

of Theorem 5.2, we again show that these estimators converge at a fast rate.
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5.2.1 Incorporating estimated bounding functions under the MOSM

Consider the case in which the user specifies nonparametric outcome regression bounds under the

MOSM, and so must construct estimates of the bounding functions δ̂(·), δ̂(·). We now analyze how

using estimated bounding functions affects the convergence rate of our estimated of the upper-bound

on positive class predictive performance. In this case, the upper-bound on positive-class predictive

performance is estimated by solving the maximization problem in each fold

p̂erf
k

+(s;β, ∆̂n) := max
δ̃∈∆̂n

Ekn[β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δ̃i | O−k]
Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i | O−k]

,

where ∆̂n :=
{
δ ∈ Rn : δ̂(Xi) ≤ δi ≤ δ̂(Xi) for i = 1, . . . , n

}
. In order to analyze the convergence rate

of p̂erf(s;β, ∆̂n), notice that

‖p̂erf
k

+(s;β, ∆̂n)−perf+(s;β,∆)‖ ≤ ‖p̂erf
k

+(s;β, ∆̂n)−p̂erf
k

+(s;β,∆n)‖+‖p̂erf
k

+(s;β,∆n)−perf+(s;β,∆)‖.

It is therefore sufficient to bound the extent to which the fold-specific estimator using the estimated

bounds ∆̂n affects our estimator relative to the oracle bounds ∆n. Our next result shows that this is

bounded by the mean squared error of the estimated bounds.

Proposition 5.3. Assume the same conditions as Theorem 5.2 and the estimated bounding functions

satisfy P (φ1(Yi; η̂−k) + (1−Di)δ̂1) > c) = 1 for some c > 0. Then, for each fold k,

‖p̂erf
k

+(s;β, ∆̂n)− p̂erf
k

+(s;β,∆n)‖ .

√√√√ 1

n

nk∑
i=1

(δ̂i − δi)2 +

√√√√ 1

n

nk∑
i=1

(δ̂i − δi)2,

where a . b means a ≤ Cb for some constant C.

This result immediately implies convergence rates for our positive-class estimator using estimated

bounding functions. Since our estimated bounding functions are based on efficient influence functions,

the main conclusions of Theorem 5.2 continue to hold as their mean-squared errors are oP(1) provided

the product of nuisance functions are estimated accurately. The following corollary is an immediate

consequence. For nonparametric outcome regression bounds, the estimated bounding functions are

defined to be δ̂i = (Γ− 1)φ1(Yi; η̂−k), δ̂i = (Γ− 1)φ(Yi; η̂−k).

Corollary 5.1. Suppose the user specifies nonparametric outcome regression bounds for some Γ,Γ > 0.

Under the same conditions as Theorem 5.2, then

∥∥∥p̂erf+(s;β, ∆̂n(Γ))− perf+(s;β,∆(Γ))
∥∥∥ = OP

(
1/
√
n+

K∑
k=1

Rk1,n

)
,

and analogously for p̂erf
+

(s;β, ∆̂n(Γ)).

Remark 1. Our analysis can be directly extended to the case in which the user specifies instrumental

variable bounds under the MOSM by redefining our estimator of the bounds on positive-class predictive
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performance. In this case, we construct a fold-specific estimate of the upper bound by instead solving

p̂erf(s;β; ∆n(z)) := max
δ̃∈∆n(z)

Ekn[β0,iφ1(Yi; η̂−k) + β0,iδ̃i]

Ekn[φ1(Yi; η̂−k) + δ̃i]
,

for ∆n = {δ̃ ∈ Rn : δz(Xi) ≤ δ̃i ≤ δz(Xi)}, where δz(x), δz(x) are defined earlier in Section 3.3.

We define p̂erf(s;β; ∆̂n(z) as before for ∆̂n = {δ̂z(Xi) ≤ δ̃i ≤ δ̂z(Xi)}. This allows us to express

the estimated instrumental variable bounding functions δ̂z(Xi), δ̂z(Xi) as being linear in the nuisance

functions and extend Proposition 5.3 using the same arguments.

6 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to show that the theoretical guarantees for our

proposed DR-Learners for the MOSM bounds on the target regression and proposed estimators for

robust audits under the MOSM hold well for reasonable choices of the sample size n and dimension of

the features d.

6.1 Integrated mean-square error of DR-Learners for target regression bounds

We first compare the integrated mean-square error of the DR-Learners for the target regression bounds

against the integrated mean-square error of the oracle DR-Learner and a plug-in learner as the sample

size n and dimension of the features d vary.

Simulation design: We generate data satisfying the MOSM with nonparametric outcome bounds

(Section 2.3). We simulate the features Xi = (Xi,1, . . . , Xi,d)
′ ∼ N(0, Id). We simulate the intervention

Di ∈ {0, 1} conditional on Xi according to P(Di = 1 | Xi = x) = σ
(

1
2
√
dπ

∑dπ
d=1Xi,d

)
for some

dπ ∈ {1, . . . , d}, where σ(a) = exp(a)
1+exp(a) . We simulate the potential outcomes (Yi(0), Yi(1)) conditional

on (Di, Xi) according to

P(Yi(1) = 1 | Di = 1, Xi = x) = σ

 1

2
√
dµ

dµ∑
d=1

Xi,d


P(Yi(1) = 1 | Di = 0, Xi = x) = Γtrueσ

 1

2
√
dµ

dµ∑
d=1

Xi,d

 ,

for some dµ ∈ {1, . . . , d}. By construction, this data generating process satisfies the MOSM with

nonparametric outcome bounds at Γ ≤ Γtrue ≤ Γ, and we set Γtrue = 0.75. Under this data-generating

process, we simulate training datasets (Xi, Di, Yi) for i = 1, . . . , n.

We compare three different estimators for the MOSM bounds on the target regression: first, our DR-

Learners proposed in Section 3.1; second, the infeasible oracle, which use the true outcome regression

and propensity score as defined in Section 3.2; and finally, a plug-in learner, which simply plugs-in

nuisance function estimates based on the same fold as the second-stage nonparametric regression and

does not use pseudo-outcomes based on the efficient influence function. Recall Theorem 3.1 established

that the integrated mean-square error of our proposed DR-Learners converge at fast rates to the
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integrated mean-square error of the infeasible oracle DR-Learners. In contrast, by not using sample-

splitting, the plug-in estimator may inherit the errors from estimating the individual nuisance functions.

Simulation results: We first analyze the performance of the DR-Learner for the upper-bound on

the target regression for a fixed choice Γ = 2/3, Γ = 3/2, and evaluate how well it recovers the true

upper bound µ(·; ∆(Γ)). Across 1000 simulated datasets of varying size n ∈ {1000, 2500, 5000} and

dimension d ∈ {100, 500}, we calculate the DR-Learner µ̂(·; ∆(Γ)), the oracle learner µ̂oracle(·; ∆(Γ)),

and the plug-in learner µ̂plugin(·; ∆(Γ)). Since the outcome regression and propensity score models are

known under the simulation design, we can directly calculate the true upper bound µ(·; ∆(Γ)) for any

choice of Γ,Γ. Throughout we set dπ = 20 and dµ = 25. The estimators are constructed using a

single split of the evaluation data (except for the plug-in learner), and the first-stage nuisance functions

η = (π1(Xi), µ1(Xi)) are estimated using cross-validated Lasso. We find analogous results for the

estimators of the lower bound on the target regression.

Figure 1: Average integrated mean square of DR-Learner, oracle learner, and plug-in learner across Monte
Carlo simulations with nonparametric outcome bounds.

Notes: This figure plots the average integrated mean square error of the DR-Learner, oracle learner, and plug-in learner
for the upper bound on the target regression µ(·; ∆(Γ)) across Monte Carlo simulations. We report these results for
n ∈ {1000, 2500, 5000}. The DR-Learner is constructed using a single split. The nuisance functions are estimated using
cross-validated Lasso for all estimators, and all estimators assume Γ = 2/3, Γ = 3/2. The results are computed over 1,000
simulations. See Section 6.1 for further details on the simulation design.

We report the average integrated mean square error of each estimator for the true upper bound

µ(·; ∆(Γ)). The results are summarized in Figure 1. As n grows large, the integrated mean square

error of the DR-Learner converges to zero with the integrated mean square error of the oracle learner

as expected from Theorem 3.1. While it is competitive with the DR-Learner for smaller sample sizes

(n = 1000), the integrated mean square for the plug-in learner is relatively constant across sample sizes

n and dimension of the features d. As a result, as n grows larger, the plug-in learner performs poorly

relative to the DR-Learner – for example, at n = 5000 and d = 500, the DR-Learner’s integrated

mean square error is only 1.9% larger than that of the oracle learner, whereas the plug-in learner’s

integrated mean square error is 18.4% larger. In contrast, by leveraging both sample-splitting and
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pseudo-outcomes based on efficient influence functions, the DR-Learner quickly converges to the true

target regression bound and improves upon simple plug-in estimation approaches.

6.2 Finite sample behavior of estimators for robust audits

We show that our proposed estimators for the bounds on overall predictive performance under the

MOSM converge quickly to the true bounds and that the associated confidence intervals for the bounds

based on the derived asymptotic normal approximation have good coverage properties for reasonable

choices of the sample size n and dimension of the features d. Appendix D.1 shows that our proposed

estimators for the bounds on the true positive rate and false positive rate converge quickly to the true

bounds as well.

Simulation design: We again generate data satisfying the MOSM with nonparametric outcome

bounds. We now simulate the features Xi ∼ U([0, 1]d), and, for a randomly drawn coefficient vector

µ, we simulate the intervention Di ∈ {0, 1} conditional on Xi according to P(Di = 1 | Xi = x) =

σ(X ′iµ). For coefficient vectors β0, β1 and some Γtrue > 0, we finally simulate the potential outcomes

(Yi(0), Yi(1)) conditional on Di, Xi according to

P(Yi(1) = 1 | Di = 1, Xi = x) = σ(X ′iβ1),

P(Yi(1) = 1 | Di = 0, Xi = x) = Γtrueσ(X ′iβ1).

This data generating process satisfies the MOSM with nonparametric outcome bounds at Γ ≤ Γtrue ≤ Γ,

and we again set Γtrue = 0.75.

Under this data generating process, we first simulate a training dataset (Xi, Di, Yi) for i = 1, . . . , ntrain,

and estimate a risk score s(·) that predicts Yi = 1 only on the selected data Di = 1. Keeping this

estimated risk score fixed, we then robustly audit the overall performance of the risk score under var-

ious assumptions on the strength of unmeasured confounding using evaluation data (Xi, Di, Yi) for

i = 1, . . . , n simulated from the same data generating process. We robustly audit the risk score’s accu-

racy perf(s;βacc) and mean square error perf(s;βmse) (as defined in Example 1) under nonparametric

outcome bounds ∆(Γ) under alternative choices of Γ = (Γ,Γ).

Simulation results: We first audit the overall predictive performance of the risk score for a fixed

choice Γ = 2/3, Γ = 3/2, and evaluate how well our proposed estimators recover the true bounds

[perf(s;β,∆(Γ)),perf(s;β,∆(Γ))]. Across 1000 simulated evaluation datasets of varying size n ∈
{500, 1000, 2500}, we calculate the estimates [p̂erf(s;β,∆(Γ)), p̂erf(s;β,∆(Γ)]. The estimators are con-

structed using a single split of the evaluation data, and we estimate the first-stage nuisance functions η =

(π1(Xi), µ1(Xi)) using random forests. Since the outcome regression and propensity score models are

known under the simulation design, we can directly calculate the true bounds [perf(s;β,∆(Γ)), perf(s;β,∆(Γ))]

for the chosen values of Γ,Γ. We report the average bias of our estimators for the true bounds on overall

performance as well as the estimated coverage rate of a 95% nominal confidence interval for the true

bounds based on the asymptotic normal approximation derived in Proposition 5.1.

Table 1(a) summarizes these results for our estimator of the upper bound on the risk score’s

mean square error, and Table 1(b) summarizes these results for our estimator of the lower bound
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on the risk score’s accuracy. We find analogous results for our estimator of the lower bound on the

risk score’s mean square error and estimator of the upper bound on the risk score’s accuracy. Our

proposed estimators are approximately unbiased for the true bounds. Their estimated standard errors

slightly underestimate the true standard errors when the size of the evaluation dataset is small, but

are quite accurate for n ≥ 1000. Consequently, confidence intervals based on the asymptotic normal

approximation for our proposed estimators have approximately 95% coverage for both the upper bound

on mean square error and lower bound on accuracy (up to simulation error). Figure 2 depicts that our

proposed estimators are approximately normally distributed in finite samples and concentrate around

the true bounds quickly as the size of the evaluation data grows large. Altogether, these numerical

results indicate our theoretical analysis of the limiting distribution of our estimators for the bounds on

overall predictive performance provide good guidance about their finite sample behavior.

n Bias of p̂erf(s;βmse,∆(Γ)) SD. of p̂erf(s;βmse,∆(Γ)) σ̂ Coverage

500 0.000 0.016 0.015 0.942
1000 0.000 0.010 0.010 0.945
2500 0.000 0.006 0.006 0.944

(a) Upper bound on mean square error

n Bias of p̂erf(s;βacc,∆(Γ)) SD. of p̂erf(s;βacc,∆(Γ)) σ̂ Coverage

500 0.001 0.015 0.015 0.941
1000 0.001 0.010 0.010 0.946
2500 0.000 0.006 0.006 0.947

(b) Lower bound on accuracy

Table 1: Bias and coverage properties of overall performance estimators of a risk score s(·) with nonparametric
outcome bounds.

Notes: This table summarizes the average bias of our estimator p̂erf(s;βmse,∆(Γ)) for the upper bound on MSE and

the lower bound on accuracy p̂erf(s;βacc,∆(Γ)), the standard deviation of our estimator (SD. of p̂erf(s;βMSE ,∆(Γ))

and p̂erf(s;βacc,∆(Γ))), the average estimated standard error of our estimator (σ̂), and the coverage rate of nominal
95% confidence intervals based on the asymptotic normal approximation in Proposition 5.1. The overall performance
estimators are constructed using a single split, and the nuisance functions are estimated using random forests. The overall
performance estimators assume that Γ = 2/3, Γ = 3/2. The results are computed over 1,000 simulations. See Section 6.2
for further details on the simulation design.

Finally, we examine how the performance of our proposed estimators vary as our assumptions

on the magnitude of unobserved confounding vary (i.e., the choice Γ,Γ). To do so, we set Γ = 1/Γ̃,

Γ = Γ̃ for Γ̃ ≥ 1, and report results varying Γ̃ ∈ {1, . . . , 2.5}. For each choice of Γ̃, we again simulate

1,000 evaluation datasets of size n = 2500 and calculate estimates the [p̂erf(s;β,∆(Γ)), p̂erf(s;β,∆(Γ)].

Across all choices of Γ̃, the estimated coverage of 95% nominal confidence intervals for the upper

bound on mean square error never dips below 94.5%, 93.3% for the lower bound on mean square error,

93.9% for the upper bound on accuracy, and 94.5% for the lower bound on accuracy. Our theoretical

analysis therefore also provides reasonable guidance as assumptions on the magnitude of unmeasured

confounding varies.
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(a) Mean square error, p̂erf(s;βmse,∆(Γ)) (b) Accuracy, p̂erf(s;βacc,∆(Γ))

Figure 2: Distribution of overall performance estimators across Monte Carlo simulations with nonparametric
outcome bounds.

Notes: This figure plots the distribution of the overall performance estimator for the upper bound on the mean square
error perf(s;βmse,∆(Γ)) (A) and the lower bound on the accuracy perf(s;βacc,∆(Γ)) (B) of a risk score s(·) across Monte
Carlo simulations. We report these results for n ∈ {500, 1000, 1500} (color). The vertical dashed lines show the true upper
bound on mean square error perf(s;βmse,∆(Γ)) and the true lower bound on accuracy perf(s;βacc,∆(Γ)). The overall
performance estimators are constructed using a single split, and the nuisance functions are estimated using random forests.
The overall performance estimators assume that Γ = 2/3, Γ = 3/2. We report these results for n ∈ {500, 1000, 2500}
(colors). The results are computed over 1,000 simulations. See Section 6.2 for further details on the simulation design.

7 Empirical illustration: consumer lending

A financial institution wishes to construct a credit risk score that predicts whether an application

will default Yi(1) ∈ {0, 1} based on application-level features, and audit the predictive performance

of an existing credit risk score. The financial institution observes historical data on past, submitted

applications, but it only observes whether a past application defaulted on their loan if the application

was “funded” (i.e., approved by the financial institution and the offered terms were accepted by the

applicant). As a result, the funding decision Di ∈ {0, 1} may be subject to unobserved confounding as

applicants may differ in unobserved ways that jointly affect their default risk and likelihood of accepting

an offered loan. For example, an applicant’s decision to accept an offered loan may depend on whether

they secured another credit offer at a competing financial institution. We now illustrate empirically

how our framework can be used to learn and audit a credit risk score that is robust to such unobserved

confounding.

We use data from Commonwealth Bank of Australia (“CommBank”), a large financial institution

in Australia, on 372,346 applications submitted from July 2017 to July 2019. As discussed in Coston,

Rambachan and Chouldechova (2021), personal loans are paid back in monthly installments, and used,

for example, to purchase a used car, refinance existing debt, pay for funeral and wedding expenses

among many other purposes. In the time period considered, personal loan sizes included amounts up

to AU$50,000 with a median of AU$10,000, and the median offered interest rate was 14.9% per annum

in our sample of applications. We observe rich application-level features such as, for example, the

applicant’s reported income, the applicant’s occupation, and their credit history at CommBank. We

only observe whether an applicant defaulted on the personal loan within 5 months Yi(1) ∈ {0, 1} if the

application was funded Di = 1 (Yi(0) := 0 since unfunded applications cannot default). In our sample
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of applications, approximately one-third of the applications were funded, and 2.0% of all funded loans

defaulted within 5 months.

7.1 Bounding individual default risk

We first construct a credit risk score to predict individual default risk Yi(1) as a function of application-

level features Xi and is robust to unobserved confounding. To do so, we use the DR-Learner to construct

the upper bound on the target regression under the MOSM with nonparametric outcome regression

bounds, µ(·; ∆(Γ)). We set Γ = 1 and report results as Γ ∈ {1, 2, 3} varies. This implies that,

conditional on observable application-level features Xi, we assume that unfunded applications are at

least as likely to default as funded applications but may be no more than Γ times as likely to default

as funded applications.

To construct the DR-Learner, we first split our sample of applications into two folds. In the first

fold, we construct estimates of the nuisance functions π1(·), µ1(·) using random forests. On the second

fold, we regress the pseudo-outcome φ1(Yi; η̂) + Γφ(π0(Xi)µ1(Xi); η̂) on the features Xi using cross-

validated logistic regression with a Lasso penalty. This yields the estimated DR-Learner for the upper

bound on 5-month default risk, µ̂(Xi; ∆(Γ)).

(a) Joint distribution of benchmark risk score vs. DR-
Learner.

(b) Coefficients in risk score as Γ varies.

Figure 3: Estimated personal loan credit risk scores as assumptions on unobserved confounding vary.

Notes: The left panel summarizes the joint distribution of a benchmark credit risk score’s predictions of default risk
against the DR-Learner’s predictions of the default risk. Among applications in each decile of the benchmark credit
score’s predicted risk distribution, the left panel plots the percentage of applications at each decile of the DR-Learner’s
predicted risk distribution. The DR-Learner is constructed assuming Γ = 1, Γ = 2, and the benchmark credit score
predicts default risk among only funded applications (i.e., it is the DR-Learner constructed assuming Γ = Γ = 1). The
right panel summarizes how the coefficients on a subset of application-level characteristics vary as our assumptions on
unobserved confounding varies Γ ∈ {1, 2, 3}. The value Γ = 1 corresponds to the benchmark credit score. Table A3
provides a detailed description of the variable names in the right panel. See Section 7.1 for further discussion.

In order to understand how varying our assumptions on unobserved confounding affects the re-

sulting credit risk score, we compare the DR-Learner’s predictions of default risk against a benchmark

credit score that simply predicts default risk among only funded applications. The left panel of Figure

3 summarizes the joint distribution of the benchmark credit score’s predictions and the DR-Learner’s

predictions, where the DR-Learner is constructed assuming Γ = 1,Γ = 2. Among applications in each

decile of the benchmark credit score’s predicted risk distribution, the left panel plots the percentage

of applications at each decile of the DR-Learner’s predicted risk distribution. We find that among
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applications at any particular decile of the benchmark credit score’s predicted risk distribution, there

exists meaningful variation in the DR-Learner’s risk predictions. Among applications in the 3rd decile

and 8th decile of the benchmark risk score’s predicted risk distribution, 13.8% of applications are in

the top half of the DR-Learner’s predicted risk distribution and 4.7% of applications are in the bottom

half of the DR-Learner’s predicted risk distribution respectively. Similarly, among applications in the

5th decile of the benchmark risk score’s predicted risk distribution, 18.7% of applications are flipped

to either the bottom (deciles 1-3) or top (deciles 8-10) of the DR-Learner’s predicted risk distribution.

The right panel of Figure 3 investigates what drives these differences in predicted default risk by

comparing how the estimated coefficients on a subset of application-level characteristics vary as our

assumptions on unobserved confounding Γ vary. Table A3 provides a more detailed description of the

variable names in the right panel.11 Interestingly, altering our assumptions on unobserved confounding

leads to effectively no difference in the estimated coefficients for some notable application-level charac-

teristics. For example, the estimated coefficient on the application’s total net income and credit bureau

score do not vary as Γ varies and are always equal to zero. In contrast, for some characteristics such as

the number of credit card applications submitted by all applicants on the application, the benchmark

risk score places no weight them, whereas all DR-Learners with Γ > 1 incorporate them into the model

and assign a non-zero weight. For other characteristics like the the applicant’s occupation type or their

maximum delinquency over the last 12 months, varying our assumptions on unobserved confounding

lead to large changes in the magnitudes of the estimated coefficients. Altogether, these results high-

light that explicitly accounting for unobserved confounding may lead to substantive differences in the

resulting credit risk score.

7.2 Robust audits of a credit score

We next robustly audit an existing credit risk score for its overall predictive performance and its

predictive performance across various subgroups of interest. To do so, we again split our sample of

applications into two subsets, which we will refer to now as the training data and evaluation data. In the

training data, we estimate a benchmark risk score that predicts default only among funded applications

using a random forest estimated on application-level characteristics. Keeping this benchmark risk

score fixed, we then use the evaluation data to analyze its predictive performance. We implement our

estimators by splitting the evaluation data into two folds; on the first fold, we construct estimates of

the nuisance functions π1(·), µ1(·), and plug them into our proposed estimators from Section 5 in the

second fold. We again bound unobserved confounding using the MOSM with nonparametric outcome

regression bounds, setting Γ = 1 and reporting results as Γ ∈ [1, 4] varies.

We first investigate how the bounds on the benchmark risk score’s overall predictive performance

varies as our assumptions on unobserved confounding vary. We evaluate its overall accuracy and mean

square error; the results are summarized in Figure 4. Panel (A) illustrates how the upper and lower

bounds (black) on the benchmark risk score’s accuracy varies as Γ varies, and Panel (B) reports the

analogous results for its mean square error. When Γ = 1, the MOSM with nonparametric outcome

regression bounds is equivalent to assuming that there is no unmeasured confounding; therefore, the

upper and lower bounds both equal the benchmark risk score’s predictive performance over only funded

11Personal loans applications can have multiple listed applicants, and so some variables refer to just the 1st listed
applicant.
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applications (dashed red line). As Γ increases, the MOSM with nonparametric outcome regression

bounds now allows default rates among unfunded applications to now differ, and so the estimated

bounds widen. Importantly, as Γ increases, the bounds on the benchmark risk score’s accuracy and

mean square error remain informative. For example, at Γ = 3, which allows unfunded applications to be

no more than 3 times as likely to default as funded applications conditional on observed application-level

features, the lower bound on accuracy is 0.60 and the upper bound is 0.69.

(a) Accuracy (b) Mean square error

Figure 4: Overall predictive performance of benchmark risk score as assumptions on unobserved confounding
varies.

Notes: The left panel summarizes how the bounds on the benchmark risk score’s overall accuracy varies as the our
assumptions on unobserved confounding varies. The right panel summarizes how the bounds on its overall mean square
error varies. The bounds on overall predictive performance (black) are constructed under the MOSM with nonparametric
outcome regression bounds, setting Γ = 1 and varying Γ ∈ [1, 4]. The overall predictive performance over only funded
applications is plotted in the red dashed line. The estimated bounds on overall predictive performance across constructed
using a single split of the evaluation data, and the nuisance functions are estimated using random forests. The benchmark
risk score is constructed by predicting default risk among only funded applications in the training data. See Section 7.2
for further details.

Finally, we use our estimators to investigate the benchmark risk score’s predictive disparities. Fol-

lowing Coston, Rambachan and Chouldechova (2021), we focus on disparities in predictive performance

across SA4 geographic regions in Australia. An SA4 geographic region is a statistical area defined by

the Australian Bureau of Statistics, and we define an SA4 region to be “socioeconomically disadvan-

taged” if it falls in the top quartile of SA4 regions based on the Australian Bureau of Statistics Index of

Relative Socioeconomic Disadvantage (IRSD).12 The left panel of Figure 5 summarizes how the bounds

on the benchmark risk score’s accuracy vary across socioeconomically advantaged and disadvantaged

SA4 regions. We find qualitatively similar results for the benchmark risk score’s mean square error.

Among only funded applications, we observe that the benchmark risk score’s accuracy is approximately

the same across advantaged and disadvantaged SA4 regions in the left panel. As before, the bounds on

the benchmark risk score’s accuracy widen for both groups as Γ grows larger. Interestingly, however,

the bounds are wider over advantaged SA4 regions than disadvantaged SA4 regions at each choice of Γ,

12The Index of Relative Socioeconomic Disadvantage is an index constructed by the Australian Bureau of Statistics that
summarizes census data related to socioeconomic disadvantage, such as the average household income and the fraction of
households without internet access. See Australian Bureau of Statistics (2016) for complete details on the construction of
the IRSD. The IRSD is constructed at a more granular geographic level (SA2 regions), and so we aggregate the IRSD to
the SA4 region level by taking its population-weighted average across all SA2 regions within each SA4 region.
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suggesting that the benchmark risk score’s accuracy is more sensitive to assumptions about unobserved

confounding on advantaged SA4 regions. The right panel summarizes how the upper bound on the

benchmark risk score’s calibration varies as we vary Γ ∈ {1, 2, 3} across SA4 regions. We report the

benchmark risk score’s calibration over 25 equal-sized bins of predicted risk. At each credit score bin

and each choice of Γ, the upper bound on the risk score’s calibration is larger among socioeconomically

advantaged geographic regions than socioeconomically disadvantaged geographic regions. Furthermore,

as Γ grows larger, the gap in the risk score’s calibration across geographic regions widens.

(a) Accuracy by SA4 region (b) Calibration by SA4 region

Figure 5: Accuracy and calibration of estimated risk score across SA4 regions as assumptions on unobserved
confounding vary.

Notes: The left panel summarizes how the bounds on the benchmark risk score’s accuracy varies as our assumptions on
unobserved confounding varies across socioeconomically advantaged and disadvantaged SA4 geographic regions. The right
panel summarizes how the upper bound on its calibration varies as our assumptions on unobserved confounding varies
across socioeconomically advantaged and disadvantaged SA4 geographic regions. The bounds on predictive performance
are constructed under the MOSM with nonparametric outcome regression bounds, setting Γ = 1 and varying Γ ∈ [1, 4].
In the left panel, the bench mark risk score’s accuracy over only funded applications is plotted in the red dashed line.
The estimated bounds on predictive performance across constructed using a single split of the evaluation data, and the
nuisance functions are estimated using random forests. The benchmark risk score is constructed by predicting default risk
among only funded applications in the training data. See Section 7.2 for further details.

Altogether, these results highlight that explicitly accounting for unobserved confounding meaning-

fully affects how we assess the predictive performance of credit risk scores, and our estimators enable

users to tractably report sensitivity analyses that vary their assumptions on unobserved confounding.

8 Connections to existing sensitivity analysis models

We now formally relate the MOSM to existing approaches to modelling unobserved confounding in the

causal inference literature. We discuss how existing approaches imply the MOSM using non-parametric

outcome regression bounds for particular choices of Γ,Γ > 0. In this sense, the MOSM places weaker

restrictions on unobserved confounding than these existing approaches, but our methods nonetheless

enable users to robustly learn and evaluate risk assessments in high-stakes settings.

We emphasize that we do not view the MOSM as being in competition with these existing sensitivity

analysis models. In contrast, users must have a suite of options that can be used depending on what

is most intuitive to them.
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8.1 Marginal sensitivity model

A recently popular model used for sensitivity analysis is the marginal sensitivity model (MSM), which

is a nonparametric relaxation of unconfoundedness that restricts the extent to which unobserved con-

founders may impact the odds of being treated vs. untreated. The MSM specifies that, for some Λ ≥ 1,

(Xi, Di, Yi(0), Yi(1)) ∼ P(·) satisfies

Λ−1 ≤ P(Di = 1 | Xi, Yi(0), Yi(1))

P(Di = 0 | Xi, Yi(0), Yi(1))

P(Di = 0 | Xi)

P(Di = 1 | Xi)
≤ Λ (22)

with probability one. The MSM nests the special case of unconfoundedness by setting Λ = Λ = 1.

Notice that for the odds ratio in (22) to be well-defined requires overlap to hold conditional both on

(Xi, Yi(0), Yi(1)) and Xi. The MSM was originally proposed by Tan (2006), and has since received

substantial attention among researchers (e.g., see Zhao, Small and Bhattacharya, 2019; Kallus, Mao

and Zhou, 2018; Dorn and Guo, 2021; Dorn, Guo and Kallus, 2021; Kallus and Zhou, 2021).

We now state a simple proposition showing that relates the MSM to the nonparametric outcome

regression bounds on δ(x) = E[Yi(1) | Di = 0, Xi]− E[Yi(1) | Di = 1, Xi] under the MOSM.

Proposition 8.1.

i. Suppose that (Xi, Di, Yi(0), Yi(1)) ∼ P(·) satisfies the MSM (22) for some Λ ≥ 1. Then, P(·)
satisfies the MOSM (Assumption 2.1) with δ(x) = (Λ−1 − 1)µ1(x) and δ(x) = (Λ− 1)µ1(x).

ii. Suppose that (Xi, Di, Yi(0), Yi(1)) ∼ P(·) satisfies Yi(0) = 0 and the MOSM (Assumption 2.1)

with nonparametric outcome regression bounds for some Γ,Γ > 0. Then, P(·) satisfies

Γ
−1 ≤ P(Di = 1 | Yi(1) = 1, Xi)P(Di = 0 | Xi)

P(Di = 0 | Yi(1) = 1, Xi)P(Di = 1 | Xi)
≤ Γ−1, and

Γ− 1

Γ(1− Γµ1(x))
+ Γ−1 ≤ P(Di = 1 | Yi(1) = 0, Xi)P(Di = 0 | Xi)

P(Di = 0 | Yi(1) = 0, Xi)P(Di = 1 | Xi)
≤ Γ− 1

Γ(1− Γµ1(x))
+ Γ

−1
.

This first result relates to Proposition 3 in Dorn, Guo and Kallus (2021), which establishes that the

MSM implies a bound on E[Yi(1) | Di = 0, Xi] via the solution to a conditional value-at-risk problem

for general outcomes. For our binary outcome setting, we show in the proof that the MSM directly

implies a bound on E[Yi(1) | Di = 0, Xi] by an application of Bayes’ rule. By an analogous argument,

our second result establishes a partial converse, showing that the MOSM implies an MSM-like bound

for sample-selection models in which Yi(0) ≡ 0 (e.g., our running credit lending and pretrial release

examples). A user that specifies the MSM (22) for conducting sensitivity analyses can, therefore, use

our methods to bound the target regression, construct robust decision rules, or conduct robust audits

of risk assessments under the MOSM.

8.2 Rosenbaum’s Γ-sensitivity model

Another famous framework for conducting sensitivity analysis is Rosenbaum’s Γ-sensitivity analysis

model, which summarizes the violation of the unconfoundedness by bounding the extent to which the

odds of being treated vs. untreated may vary across different values of the unobservables (e.g., Rosen-

baum, 1987, 2002). The Γ-sensitivity analysis model specifies that for some Γ ≥ 1, (Xi, Di, Yi(0), Yi(1)) ∼
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P(·) satisfies

Γ−1 ≤ P(Di = 1 | Xi, Yi(1) = y1, Yi(0) = y0)

P(Di = 0 | Xi, Yi(1) = y1, Yi(0) = y0)

P(Di = 0 | Xi, Yi(1) = ỹ1, Yi(0) = ỹ0)

P(Di = 1 | Xi, Yi(1) = ỹ1, Yi(0) = ỹ0)
≤ Γ (23)

for all y0, y1, ỹ0, ỹ1 ∈ {0, 1} and with Xi-probability one. Notice that Γ = 1 again nests the special case

of unconfoundedess. As discussed in Section 7 of Zhao, Small and Bhattacharya (2019), Rosenbaum’s

Γ-sensitivity analysis model was originally proposed to conduct sensitivity analysis on observational

experiments conducted on finite populations that have a paired or grouped design, ignoring sampling

uncertainty.13,14 Recently, Yadlowsky et al. (2018) applies Rosenbaum’s Γ-sensitivity analysis model

to observational settings like we consider, deriving bounds on the conditional average treatment effect

under the model, and developing methods for conducting inference on the average treatment effect.

For our purposes, it is sufficient to state a simple proposition that relates Rosenbaum’s Γ-sensitivity

analysis model to the MOSM with nonparametric outcome regression bounds.

Proposition 8.2.

i. Suppose (Xi, Di, Yi(0), Yi(1)) ∼ P(·) satisfies Rosenbaum’s sensitivity analysis model (23) for

some Γ > 1. Then P (·) satisfies the MOSM (Assumption 2.1) with δ(x) = (Γ−1 − 1)µ1(x) and

δ(x) = (Γ− 1)µ1(x).

ii. Suppose (Xi, Di, Yi(0), Yi(1)) ∼ P(·) satisfies Yi(0) = 0 and the MOSM (Assumption 2.1) with

nonparametric outcome regression bounds for some Γ,Γ > 0. Then, P (·) satisfies

Γ− 1

1− Γµ1(x)
+ 1 ≤ P(Di = 1 | Yi(1) = 0, Xi)

P(Di = 0 | Yi(1) = 0, Xi)

P(Di = 0 | Xi, Yi(1) = 1)

P(Di = 1 | Xi, Yi(1) = 1)
≤ Γ− 1

1− Γµ1(x)
+ 1.

To show the first result, we show that Rosenbaum’s Γ-sensitivity model implies a marginal sensitivity

model in our binary outcome setting. This in turn implies a MOSM with nonparametric outcome

regression bounds. This relates to Lemma 2.2 in Yadlowsky et al. (2018), which shows that a version

of Rosenbaum’s sensitivity analysis model implies a bound on E[Yi(1) | Di = 0, Xi] via the solution to

an estimating equation for general outcomes. The second result again establishes a partial converse –

the MOSM implies an Rosenbaum-style bound for sample-selection models in which Yi(0) ≡ 0, where

the bounds on the odds ratio vary based on the features Xi but only through the identified outcome

regression. As a consequence, a user that specifies Rosenbaum’s sensitivity analysis model (23) for

conducting sensitivity analyses can, therefore, again use our methods to bound the target regression,

construct robust decision rules, or conduct robust audits of risk assessments under the MOSM.

8.3 Sensitivity analysis via outcome modelling

Finally, a large literature conducts sensitivity analyses in missing data problems via outcome mod-

elling. A popular approach is to specify flexible parametric models for the difference between the

unobserved conditional distribution Yi(1) | {Xi, Di = 0} and the observed conditional distribution

13We refer the reader to Section 7 of Zhao, Small and Bhattacharya (2019) for an in-depth comparison of the marginal
sensitivity model and Rosenbaum’s Γ-sensitivity model.

14See also Aronow and Lee (2013) and Miratrix, Wager and Zubizarreta (2018) which also use a version of Rosenbaum’s
Γ-sensitivity model to construct bounds on a finite-population from a random sample with unknown selection probabilities.
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Yi(1) | {Xi, Di = 1}, or between Yi(1) | {Xi, Di = 0} and Yi(1) | Xi (e.g., Rotnitzky et al., 2001;

Birmingham, Rotnitzky and Fitzmaurice, 2003; Brumback et al., 2004; Franks, Airoldi and Rubin,

2020). For example, Robins, Rotnitzky and Scharfstein (2000b); Franks, D’Amour and Feller (2019);

Scharfstein et al. (2021) consider a sensitivity analysis model that assumes P(Yi(1) | Di = 0, Xi) =

P(Yi(1) | Di = 1, Xi)
exp(γtst(Yi(1))

C(γt;Xi)
, where γt is a parameter chosen by the user and st(·) is a “tilting

function” that is also specified by the user. For particular fixed choices of γt, st(·), such a model is suf-

ficient to point identify various quantities of interest such as the target regression µ∗(x), the difference

δ(x) = P(Yi(1) = 1 | Di = 0, Xi) − P(Yi(1) = 1 | Di = 1, Xi) or the predictive performance measures

we consider. The literature then recommends that researchers report a sensitivity analysis that sum-

marizes how their conclusions vary for alternative choices of γt or st(·). In practice, however, it may be

difficult, for the user to specify domain-specific knowledge that completely summarizes the relationship

between these conditional distributions. Furthermore, any particular choice of the sensitivity analysis

parameter γt and tilting function st(·) may be mis-specified, and it is common that users only report

results for a few choices. This outcome modelling approach may not encompass all possible values of

the unidentified quantities that are consistent with the user’s domain-knowledge.

An alternative approach places bounds on the mean difference in potential outcomes under treat-

ment and control Luedtke, Diaz and van der Laan (2015); Dı́az and van der Laan (2013); Dı́az, Luedtke

and van der Laan (2018). Our MOSM extends this approach by placing bounds on the covariate-

conditional difference in means. That is, the MOSM considers all joint distributions (Xi, Di, Yi(0), Yi(1)) ∼
P(·) that are consistent with the observable data and the user’s specified bounds on the mean difference

δ(x). This requires the user to specify intuitive domain knowledge, such as how much the probability

of default can vary between accepted and rejected applicants in credit lending or how much the failure

to appear rate can differ between released and detained defendants in pretrial release. Furthermore,

as we showed earlier, such bounds natural arise from popular quasi-experimental methods such as

instrumental variables.

9 Conclusion

This paper developed counterfactual methods for learning and evaluating statistical risk assessments

that are robust to unmeasured confounding. We proposed the mean outcome sensitivity model for

unobserved confounding that bounds the extent to which unmeasured confounders can affect outcomes

on average in the population. Under the MOSM, we derived their sharp identified sets for the conditional

likelihood of the outcome under the proposed decision, popular predictive performance metrics, and

commonly-used predictive disparities are partially identified.

We solved three tasks essential to deploying counterfactual risk assessments in high-stakes settings.

First, we proposed a doubly-robust learning procedure for the bounds on the conditional likelihood

of the outcome under the proposed decision. Second, we translated our estimated bounds on the

conditional likelihood of the outcome under the proposed decision can be translated into a robust

recommendation rule. Third, we developed estimators for the bounds on the predictive performance

metrics of existing statistical risk assessments based on efficient influence functions and cross-fitting.

The safe and reliable use of statistical risk assessments in high-stakes settings requires taking

the violations of unconfoundedness seriously and a suite of frameworks for modeling such violations.
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Providing practitioners with a range of alternative sensitivity analysis models gives them flexibility to

choose the framework that is most intuitive for their own setting – some may find sensitivity analysis

frameworks like the MOSM that bound how unmeasured confounders affect outcomes to be more

natural, whereas others may prefer those that bound how unmeasured confounders affect historical

decisions like the marginal sensitivity model. There is room for more work on proposing intuitive

models for unobserved confounding, and developing the associated suite of tools needed for robust

learning and evaluation of statistical risk assessments.
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Counterfactual Risk Assessments under Unmeasured
Confounding

Online Appendix

Amanda Coston Ashesh Rambachan Edward Kennedy

This online appendix contains proofs and additional theoretical results for the paper “Counterfac-
tual Risk Assessments under Unmeasured Confounding” by Amanda Coston, Ashesh Rambachan and
Edward Kennedy. Section A contains proofs for results stated in the main text. Section B contains
auxiliary lemmas used in the proofs for results stated in the main text. Section C contains additional
theoretical results for variance estimation of our overall predictive performance estimators and analyzes
the bounds on predictive disparity measures under the MOSM. Section D contains additional Monte
Carlo simulations.

A Omitted proofs

A.1 Section 2: the mean outcome sensitivity model

A.1.1 Proof of Proposition 2.1

Proof. For any z ∈ Z, note that µ∗(x, z) = E[Yi(1)Di | Xi = x, Zi = z] +E[Yi(1)(1−Di) | Xi = x, Zi =
z], where E[Yi(1)Di | Xi = x, Zi = z] = E[YiDi | Xi = x, Zi = z] and E[Yi(1)(1 − Di) | Xi = x, Zi =
z] ∈ [0, π0(x, z)]. Therefore, µ∗(x, z) satisfies

E[YiDi | Xi = x, Zi = z] ≤ µ∗(x, z) ≤ E[YiDi | Xi = x, Zi = z] + π0(x, z).

Further, since (Yi(0), Yi(1)) ⊥ Zi | Xi, µ
∗(x, z) = µ∗(x), this in turn implies that

E[YiDi | Xi = x, Zi = z] ≤ µ∗(x) ≤ E[YiDi | Xi = x, Zi = z] + π0(x, z).

The result then follows by noting that µ∗(x) = µ1(x) + δ(x)π0(x) and rearranging.

A.1.2 Proof of Lemma 2.1

Proof. The statements for H(µ∗(x); ∆) and H(perf(s;β); ∆) follow immediately since (i) both µ∗(x)
and perf(s;β) are linear in δ(·), and (ii) ∆ is convex.

To prove the statement for perf+(s;β), we introduce the convenient shorthand

perf+(s;β, δ) :=
E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi)]

E[µ1(Xi) + π0(Xi)δ(Xi)]
.

Observe that if p̃erf+(s;β) ∈ H(perf+(s;β),∆), then there exists some δ̃ ∈ ∆ such that p̃erf+(s;β) =

perf+(s;β, δ̃). It follows immediately that p̃erf+(s;β) ∈ [perf
+

(s;β,∆), perf+(s;β,∆)]. All that remains

to show is that every value in the interval [perf
+

(s;β,∆), perf+(s;β,∆)] is achieved by some δ(·) ∈ ∆.

Towards this, we apply a one-to-one change-of-variables. Let U(·) : X → [0, 1] be defined as U(x) =
δ(x)−δ(x)

δ(x)−δ(x)
. For any δ(·) ∈ ∆, there exists U(·) ∈ [0, 1] such that perf+(s;β, δ) = perf+(s;β, U), where

perf+(s;β, U) :=
E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi) + β0,iπ0(Xi)(δ(Xi)− δ(Xi))U(Xi)]

E[µ1(Xi) + π0(Xi)δ(Xi) + π0(Xi)(δ(Xi)− δ(Xi))U(Xi)]
.

Conversely, for any U(·) ∈ [0, 1], there exists a corresponding δ(·) ∈ ∆ such that perf+(s;β, U) =
perf+(s;β, δ), where δ(x) = δ(x) + (δ(x)− δ(x))U(x).
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Next, apply the Charnes-Cooper transformation with

Ṽ =
1

E[µ1(Xi) + π0(Xi)δ(Xi) + π0(Xi)(δ(Xi)− δ(Xi))U(Xi)]

Ũ(·) =
U(·)

E[µ1(Xi) + π0(Xi)δ(Xi) + π0(Xi)(δ(Xi)− δ(Xi))U(Xi)]
.

So, for any U(·) ∈ [0, 1], there exists Ṽ, Ũ(·) satisfying Ũ(·) ∈ [0, Ṽ ], Ṽ ≥ 0 and E[µ1(Xi)+π0(Xi)δ(Xi)]Ṽ+
E[π0(Xi)(δ(Xi)− δ(Xi))Ũ(Xi)] = 1 such that perf+(s;β, U) = perf+(s;β, Ũ, Ṽ ), where

perf+(s;β, Ũ, Ṽ ) = E[β0(Xi)µ1(Xi) + (1−Di)β0(Xi)δ(Xi)]Ṽ + E[β0(Xi)π0(Xi)(δ(Xi)− δ(Xi))Ũ(Xi)].

Conversely, for any such Ũ(·), Ṽ , there exists U(·) ∈ [0, 1] such that perf+(s;β, Ũ, Ṽ ) = perf+(s;β, U).
Now consider any p̃ ∈ [perf

+
(s;β,∆), perf+(s;β,∆)], which satisfies for some λ ∈ [0, 1]

p̃ = λperf
+

(s;β,∆) + (1− λ)perf+(s;β,∆).

Let δ(·), δ(·) be the functions achieving the infimum and supremum respectively

δ(·) ∈ arg min
δ∈∆

perf+(s;β, δ), δ(·) ∈ arg max
δ∈∆

perf+(s;β, δ).

By the change-of-variables, there exists Ṽ , Ũ(·) and Ṽ , Ũ(·) such that

perf
+

(s;β,∆) = perf+(s;β, Ũ(·), Ṽ ), perf+(s;β,∆) = perf+(s;β, Ũ(·), Ṽ ).

Therefore, p̃ = λperf+(s;β, Ũ(·), Ṽ ) + (1 − λ)perf+(s;β, Ũ(·), Ṽ ). Since perf+(s;β, Ũ, Ṽ ) is linear in
Ũ, Ṽ , we also have that

p̃ = perf+(s;β, λŨ + (1− λ)Ũ , λṼ + (1− λ)Ṽ ).

We can therefore apply the change-of-variables in the other direction to construct the corresponding
δ̃(·) ∈ ∆, which satisfies p̃ = perf+(s;β, δ̃) by construction.

A.2 Section 3: bounding the target regression under the outcome sensitivity model

A.2.1 Proof of Theorem 3.1

Proof. We prove this result for the estimator of the upper-bound, and the same argument applies to
the estimator of the lower-bound. Observe that

‖µ̂(·; ∆)− µ∗(·; ∆)‖ ≤ ‖µ̂(·; ∆)− µ̂oracle(·; ∆)‖+ ‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖
≤ ‖µ̂(·; ∆)− µ̂oracle(·; ∆)− b̃(·)‖+ ‖b̃(·)‖+ ‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖

for b̃(x) = Ên[b̂(Xi) | Xi = x] is the smoothed bias and b̂(x) = E[φ1(Yi; η̂) − φ1(Yi; η) | O1, Xi = x]
is the conditional bias of the estimated pseudo-outcome. Under Assumption B.1, Lemma B.1 implies
that ‖µ̂(·; ∆)− µ̂oracle(·; ∆)− b̃(·)‖ = oP(Roracle). Furthermore,

b̂(x)2 =

{
π1(x)− π̂1(x)

π̂1(x)
(µ1(x)− µ̂1(x))

}2

≤ 1

ε2
{(π1(x)− π̂1(x))(µ1(x)− µ̂1(x))}2 ,
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where the first equality applies iterated expectations, and the second applies the assumption of bounded
propensity score. Putting this together yields

‖µ̂(·; ∆)− µ∗(·; ∆)‖ ≤ ‖µ̂oracle(·; ∆)− µ∗(·; ∆)‖+ ε−1‖R̃(·)‖+ oP(Roracle)

as desired.

A.2.2 Proof of Proposition 3.1

Proof. We prove the result for the DR-Learner of the upper bound, and the same argument applies for
the DR-Learner of the lower bound. Following the proof of Theorem 3.1, we arrive at

‖µ̂(·; ∆(Γ))−µ∗(·; ∆(Γ))‖ ≤ ‖µ̂(·; ∆(Γ))−µ̂oracle(·; ∆(Γ))−b̃(·)‖+‖b̃(·)‖+‖µ̂oracle(·; ∆(Γ))−µ∗(·; ∆(Γ))‖,

now for b̃(x) = En[b̂(Xi) | Xi = x] and

b̂(x) =E[φ1(Yi; η̂)− φ1(Yi; η) | O1, Xi = x]︸ ︷︷ ︸
(a)

+

(Γ− 1)E[φ(π0(Xi)µ1(Xi); η̂)− φ(π0(Xi)µ1(Xi); η) | O1, Xi = x]︸ ︷︷ ︸
(b)

.

Given Assumption B.1, ‖µ̂(·; ∆(Γ))− µ̂oracle(·; ∆(Γ))− b̃(·)‖ = oP(Roracle) by Lemma B.1. Furthermore,
b̂(x)2 ≤ 2(a)2 + 2(Γ̄− 1)2(b)2, where

(a)2 ≤ 1

ε2
{(π̂1(x)− π1(x)) (µ̂1(x)− µ1(x))}2

by the proof of Theorem 3.1, and

(b)2 =

{
(π0(x)− π̂0(x))µ̂1(x) +

π1(x)

π̂1(x)
(µ1(x)− µ̂1(x)) π̂0(x) + π̂0(x)µ̂1(x)− π0(x)µ1(x)

}2

=

{
(π0(x)− π̂0(x))µ̂1(x) +

π1(x)

π̂1(x)
(µ1(x)− µ̂1(x)) π̂0(x) + π̂0(x)(µ̂1(x)− µ1(x)) + µ1(x)(π̂0(x)− π0(x))

}2

={
(π0(x)− π̂0(x))(µ̂1(x)− µ1(x)) +

π̂0(x)

π̂1(x)
(π1(x)− π̂1(x))(µ1(x)− µ̂1(x))

}2

={
(π1(x)− π̂1(x))(µ1(x)− µ̂1(x)) +

π̂0(x)

π̂1(x)
(π1(x)− π̂1(x))(µ1(x)− µ̂1(x))

}2

≤ 1

ε2
{(π1(x)− π̂1(x))(µ̂1(x)− µ1(x))}2

by iterated expectations and the assumption of bounded propensity score. Putting this together then
yields

‖µ̂(·; ∆(Γ))− µ∗(·; ∆(Γ))‖ ≤ ‖µ̂oracle(·; ∆(Γ))− µ∗(·; ∆(Γ))‖+ ε−1‖R̃(·)‖+ oP(Roracle)

as desired.

A.2.3 Proof of Proposition 3.2

Proof. We prove the result for the DR-Learner of the upper bound, and the same argument applies
for the DR-Learner of the lower bound. To ease notation, write µDYz (x) = E[DiYi | Zi = z,Xi = x],
λz(x) = P(Zi = x | Xi = x), and µ̂(Oi; ∆(z)) = φz(1 − Di; η̂) + φz(DiYi; η̂). Following the proof of
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Theorem 1, we arrive at

‖µ̂(·; ∆(z))−µ∗(·; ∆(z))‖ ≤ ‖µ̂(·; ∆(z))−µ̂oracle(·; ∆(z))− b̃(·)‖+‖b̃(·)‖+‖µ̂oracle(·; ∆(z))−µ∗(·; ∆(z))‖,

where b̃(x) = En[b̂(x) | Xi = x] and

b̂(x) = E[φz(1−Di; η̂)− φz(1−Di; η) | Xi = x,O1]︸ ︷︷ ︸
(a)

+E[φz(DiYi; η̂)− φz(DiYi; η) | Xi = x,O1]︸ ︷︷ ︸
(b)

.

Given Assumption B.1, ‖µ̂(·; ∆(z))− µ̂oracle(·; ∆(z))− b̃(·)‖ = oP(Roracle(z)) by Lemma B.1. Further-
more, b̂(x)2 ≤ 2(a)2 + 2(b)2, where

(a)2 =

{
λz(x)

λ̂z(x)
(π0(x, z)− π̂0(x, z)) + (π̂0(x, z)− π0(x, z))

}2

≤ 1

ε2

{
(λz(x)− λ̂z(x))(π0(x, z)− π̂0(x, z))

}2

and

(b) =
λz(x)

λ̂z(x)
(µDYz (x)− µ̂DYz (x)) + (µ̂DYz (x)− µDYz (x)) ≤ 1

ε2

{
(λz(x)− λ̂z(x))(µDYz (x)− µ̂DYz (x))

}2

by iterated expectations and bounded instrument propensity. Putting this together then yields

‖µ̂(·; ∆(z))− µ∗(·; ∆(z))‖ ≤ ‖µ̂oracle(·; ∆(z))− µ∗(·; ∆(z))‖+ ε−1‖R̃1(·)‖+ ε−1‖R̃2(·)‖+ oP(Roracle(z))

as desired.

A.3 Section 4: robust recommendations under the outcome sensitivity model

A.3.1 Proof of Lemma 4.1

Proof. At each value x ∈ X , notice that if d(x) = 1, then

(−u1,1,iµ
∗(x)+u1,0,i(1−µ∗(x)))d(x)+(−u0,0,i(1−µ∗(x))+u0,1,iµ

∗(x))(1−d(x)) = u1,0,i−(u1,1,i+u1,0,i)µ
∗(x).

This is minimized over µ∗(x) ∈ H(µ∗(x); ∆) at µ∗(x) = µ∗(x; ∆). If d(x) = 0, then

(−u1,1,iµ
∗(x)+u1,0,i(1−µ∗(x)))d(x)+(−u0,0,i(1−µ∗(x))+u0,1,iµ

∗(x))(1−d(x)) = −u0,0,i+(u0,0,i+u0,1,i)µ
∗(x).

This is minimized over µ∗(x) ∈ H(µ∗(x); ∆) at µ∗(x) = µ∗(x; ∆). The result for the lower bound
immediately follows. The result for the upper bound follows by an analogous argument.

A.3.2 Proof of Lemma 4.2

Proof. This follows directly from Lemma 4.1 and the characterization of U(d; ∆) for any d(·) : X →
{0, 1}. Recall

U(d; ∆) := E[(u1,0,i − (u1,1,i + u1,0,i)µ
∗(x)) d(Xi) +

(
−u0,0,i + (u0,0,i + u0,1,i)µ

∗(x)
)

(1− d(Xi))].

Therefore, at any x ∈ X , it is optimal to set d∗(x) = 1 if

u1,0,i − (u1,1,i + u1,0,i)µ
∗(x; ∆) ≥ −u0,0,i + (u0,0,i + u0,1,i)µ

∗(x; ∆),

or equivalently

u1,0,i + u0,0,i ≥ (u1,1,i + u1,0,i)µ
∗(x; ∆) + (u0,0,i + u0,1,i)µ

∗(x; ∆).
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Analogously, it is optimal to set d∗(x) = 0 if

u1,0,i + u0,0,i < (u1,1,i + u1,0,i)µ
∗(x; ∆) + (u0,0,i + u0,1,i)µ

∗(x; ∆).

A.3.3 Proof of Theorem 4.1

Proof. Recall from Lemma 4.1 that, for any decision rule d(·) : X → {0, 1},

U(d; ∆) := E[(u1,0,i − (u1,1,i + u1,0,i)µ
∗(x)) d(Xi) +

(
−u0,0,i + (u0,0,i + u0,1,i)µ

∗(x)
)

(1− d(Xi))] =

E[−u0,0,i + (u0,0,i + u0,1,i)µ
∗(Xi; ∆)] + E[((u1,0,i + u0,0,i)− µ̃∗(x; ∆)) d(Xi)].

Therefore, we can rewrite regret as

R(d̂; ∆) = U(d∗; ∆)− U(d̂; ∆) =

E[(c(Xi)− µ̃∗(Xi; ∆)) (d∗(Xi)− d̂(Xi)],

where we defined the shorthand notation c(Xi) = u1,0(Xi) + u0,0(Xi). It then follows that

R(d̂; ∆) =

∫
x∈X

(c(x)− µ̃∗(x; ∆))
(
d∗(x; ∆)− d̂(x; ∆)

)
dP (x) ≤

∫
x∈X
|µ̃∗(x; ∆)− c(x)| 1{d∗(x; ∆) 6= d̂(x; ∆)}dP (x).

Furthermore, at any fixed Xi = x, d̂(Xi) 6= d∗(Xi) implies that |µ̃∗(x) − ̂̃µ(x)| ≥ |µ̃∗(x) − c(x)|.
Combining this with the previous display implies that

R(d̂; ∆) ≤
∫
x∈X
|µ̃∗(x)− ̂̃µ(x)|dP (x).

Substituting in the definition of µ̃∗(x) and ̂̃µ(x), we have

|µ̃∗(x)− ̂̃µ(x)| =

|(u1,1(x)+u1,0(x))µ∗(x; ∆)+(u0,0(x)+u0,1(x))µ∗(x; ∆)−(u1,1(x)+u1,0(x))µ̂(x; ∆)−(u0,0(x)+u0,1(x))µ̂(x; ∆)| ≤

|µ∗(x; ∆)− µ̂(x; ∆)|+ |µ∗(x; ∆)− µ̂(x; ∆)|,

which follows by the triangle inequality and using u0,0(x), u0,1(x), u1,0(x), u1,1(x) are non-negative and

sum to one. Substituting back into the bound on R(d̂; ∆) then delivers

R(d̂; ∆) ≤
∫
x∈X
|µ∗(x; ∆)− µ̂(x; ∆)|dP (x) +

∫
x∈X
|µ∗(x; ∆)− µ̂(x; ∆)|dP (x) =

‖µ∗(x; ∆)− µ̂(x; ∆)‖1 + ‖µ∗(x; ∆)− µ̂(x; ∆)‖1.

Therefore, using the Cauchy-Schwarz inequality ‖µ∗(x; ∆) − µ̂(x; ∆)‖21 ≤ ‖µ∗(x; ∆) − µ̂(x; ∆)‖22 and
‖µ∗(x; ∆)− µ̂(x; ∆)‖21 ≤ ‖µ∗(x; ∆)− µ̂(x; ∆)‖22 and the inequality (a+ b)2 ≤ 2(a2 + b2),

R(d̂; ∆)2 ≤ 2‖µ∗(x; ∆)− µ̂(x; ∆)‖22 + 2‖µ∗(x; ∆)− µ̂(x; ∆)‖22.

The result then follows by applying Theorem 3.1.
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A.4 Section 5: robust audits under the outcome sensitivity model

A.4.1 Proof of Theorem 5.1

Proof. To prove the first claim, consider our proposed estimator of the upper bound on overall predictive

performance p̂erf(s;β,∆). To ease notation, let

perfi = β0,i + β1,i(1−Di)
(
1{β1,i > 0}δi + 1{β1,i ≤ 0}δi

)
+ β1,iφ1(Yi; η)

p̂erfi = β0,i + β1,i(1−Di)
(
1{β1,i > 0}δi + 1{β1,i ≤ 0}δi

)
+ β1,iφ1(Yi; η̂−Ki).

Note that we can write perf(s;β,∆) = E[perfi], where we used that E[µ1(Xi)] = E[φ1(Yi; η)] by iterated

expectations. Therefore, |p̂erf(s;β,∆)− perf(s;β,∆)| equals

∣∣∣En[p̂erfi]− E[perfi]
∣∣∣ ≤

∣∣∣∣∣∣∣
(
En[perfi]− E[perfi]

)︸ ︷︷ ︸
(a)

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣En
[(

p̂erfi − perfi

)]
︸ ︷︷ ︸

(b)

∣∣∣∣∣∣∣∣ .
By Chebyshev’s inequality, (a) is OP(1/

√
n). Next, recall we can rewrite (b) as

|En
[(

p̂erfi − perfi

)]
| = |

K∑
k=1

En[1{Ki = k}]Ekn[p̂erfi,−k − perfi]| ≤
K∑
k=1

|Ekn[p̂erfi,−k − perfi]|.

We will show that each term in the sum is OP(Rk1,n +Rk1,n/
√
n). For any k, observe that∣∣∣Ekn[p̂erfi,−k − perfi]

∣∣∣ ≤ |Ekn[p̂erfi,−k − perfi]− E[p̂erfi,−k − perfi | O−k]|+ |E[p̂erfi,−k − perfi | O−k]|,

where p̂erfi,−k − perfi = βi,1(φ1(Yi; η̂−k) − φ1(Yi; η)). The first term on the right hand side of the

previous display is therefore OP(Rk1,n/
√
n) by by Lemma B.4 and Lemma B.5. The second term on

the right hand side of the previous display is OP(Rk1,n) by Lemma B.2. Putting this together, we have
shown the first claim∣∣∣p̂erf(s;β,∆)− perf(s;β,∆)

∣∣∣ = OP

(
1/
√
n+

K∑
k=1

Rk1,n +
K∑
k=1

Rk1,n/
√
n

)
.

The result for p̂erf(s;β,∆) follows the same argument. The second claim follows by noticing that the
proof of the first claim showed that

√
n

((
p̂erf(s;β,∆)

p̂erf(s;β,∆)

)
−
(

perf(s;β,∆)
perf(s;β,∆)

))
=

1√
n

n∑
i=1

(
perfi − E[perfi]
perf

i
− E[perf

i
]

)
+ oP(1)

if R1,n = oP(1/
√
n). By the central limit theorem,

√
n

((
p̂erf(s;β,∆)

p̂erf(s;β,∆)

)
−
(

perf(s;β,∆)
perf(s;β,∆)

))
d−→ N

(
0, Cov

((
perfi
perf

i

)))
,

from which the result follows.
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A.4.2 Proof of Proposition 5.1

Proof. To prove the first claim, consider our proposed estimator of the upper bound p̂erf(s;β,∆(Γ)).
Now let

perf
Γ
i = β0,i + β1,iφ1(Yi; η) + β1,i

(
1{β1,i > 0}(Γ− 1) + 1{β1,i ≤ 0}(Γ− 1)

)
φ(π0(Xi)µ1(Xi); η)

p̂erf
Γ

i = β0,i + β1,iφ1(Yi; η̂−Ki) + β1,i

(
1{β1,i > 0}(Γ− 1) + 1{β1,i ≤ 0}(Γ− 1)

)
φ(π0(Xi)µ1(Xi); η̂−Ki).

Observe |p̂erf(s;β,∆(Γ))− perf(s;β,Γ)| equals

|En[p̂erf
Γ

i ]− E[perf
Γ
i ]| ≤ |En[perf

Γ
i ]− E[perf

Γ
i ]︸ ︷︷ ︸

(a)

|+ |En
[(

p̂erf
Γ

i − perf
Γ
i

)]
︸ ︷︷ ︸

(b)

|.

As in the proof of Theorem 5.1, (a) is OP(1/
√
n). Next, we can further rewrite (b) as

|En
[(

p̂erf
Γ

i − perf
Γ
i

)]
| = |

K∑
k=1

En[1{Ki = k}]Ekn[p̂erf
Γ

i,−k − perf
Γ
i ] ≤

K∑
k=1

|Ekn[p̂erf
Γ

i,−k − perf
Γ
i ]|.

We will again show that each term in the sum is OP(Rk1,n +Rk1,n/
√
n). Observe that

Ekn[p̂erf
Γ

i,−k − perf
Γ
i ]| ≤

|Ekn[p̂erf
Γ

i,−k − perf
Γ
i ]− E[p̂erf

Γ

i,−k − perf
Γ
i | O−k]|+ |E[p̂erf

Γ

i,−k − perf
Γ
i | Ok]|,

where

p̂erf
Γ

i,−k − perf
Γ
i = β1,i(φ1(Yi; η̂−k)− φ1(Yi; η)) + β̃1,i (φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η))

for β̃i = β1,i

(
1{β1,i > 0}(Γ− 1) + 1{β1,i ≤ 0}(Γ− 1)

)
. So |Ekn[p̂erf

Γ

i,−k − perf
Γ
i ] − E[p̂erf

Γ

i,−k − perf
Γ
i |

O−k]| is bounded by

|Ekn[β1,i (φ1(Yi; η̂−k)− φ1(Yi; η))]− E[β1,i (φ1(Yi; η̂−k)− φ1(Yi; η)) | O−k]|︸ ︷︷ ︸
(c)

+

|Ekn[β̃1,i (φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η))]− E[β̃1,i (φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η)) | O−k]|︸ ︷︷ ︸
(d)

,

where (c) is OP(Rk1,n/
√
n) by Lemma B.4 and Lemma B.5, and (d) is also OP(Rk1,n/

√
n) Lemma B.4

and Lemma B.6. The second term E[p̂erf
Γ

i,−k − perf
Γ
i | Ok]| is bounded by

|E[β1,i (φ1(Yi; η̂−k)− φ1(Yi; η)) | O−k]|︸ ︷︷ ︸
(e)

+|E[β̃1,i (φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η)) | O−k]︸ ︷︷ ︸
(f)

|,

where (e) is OP(Rk1,n) by Lemma B.2 and (f) is OP(Rk1,n) by Lemma B.7. The first result then follows
as in the proof of Theorem 5.1. The second result also follows as in the proof of Theorem 5.1, where

the asymptotic variance matrix Σ(Γ) is now defined as Cov((perf
Γ
i ,perfΓ

i
)′).
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A.4.3 Proof of Proposition 5.2

Proof. To prove the first claim, begin by our considering our proposed estimator p̂erf(s;β,∆(z)). To
ease notation, let φ(δz(Xi); η) = φ(Xi; η) and φ(δz(Xi); η) = φ(Xi; η). Further define

perf
z
i = β0,i + β1,iφ1(Yi; η) + β1,i1{β1,i > 0}φ(Xi; η) + β1,i1{β1,i ≤ 0}φ(Xi; η),

p̂erf
z

i = β0,i + β1,iφ1(Yi; η̂−k) + β1,i1{β1,i > 0}φ(Xi; η̂−Ki) + β1,i1{β1,i ≤ 0}φ(Xi; η̂−Ki).

Observe that |p̂erf(s;β,∆(z))− perf(s;β,∆(z))| equals

|En[p̂erf
z

i ]− E[perf
z
i ]| ≤ |En[perf

z
i ]− E[perf

z
i ]|︸ ︷︷ ︸

(a)

+ |En[p̂erf
z

i − perf
z
i ]|︸ ︷︷ ︸

(b)

.

The proof then follows the same steps as the proof of Proposition 5.1, except invoking Lemma B.9 and
Lemma B.8. The second claim then follows by noticing that the proof of the first claim established
that

√
n

((
p̂erf(s;β,∆(z))

p̂erf(s;β,∆(z))

)
−
(

perf(s;β,∆(z))
perf(s;β,∆(z))

))
=

1√
n

n∑
i=1

(
perf

z
i − E[perf

z
i ]

perfz
i
− E[perfz

i
]

)
+ oP(1)

if R1,n = oP(1/
√
n), R2,n = oP(1/

√
n), and R3,n = oP(1/

√
n) and applying the central limit theorem.

The asymptotic variance matrix is defined as Σ(z) = Cov((perf
z
i ,perfz

i
)′).

A.4.4 Proof of Lemma 5.1

Proof. We first use the change-of-variables δ(Xi) = δ(Xi) + (δ(Xi)− δ(Xi))Ui for Ui ∈ [0, 1] to rewrite

p̂erf
k

+(s;β,∆) as

p̂erf
k

+(s;β,∆n) := max
U

Ekn[β0,iφ1(Yi; η̂) + β0,i(1−Di)δi + β0,i(1−Di)(δi − δi)Ui]
Ekn[φ1(Yi; η̂) + (1−Di)δi + (1−Di)(δi − δi)Ui]

s.t. 0 ≤ Ui ≤ 1 for i = 1, . . . , nk,

where U = (U1, . . . , Un)′.
Define ĉk = Ekn[β0,iφ1(Yi; η̂)+β0,i(1−Di)δi], d̂ = Ekn[φ1(Yi; η̂)+(1−Di)δi], α̂i := β0,i(1−Di)(δi−δi),

γ̂i := (1−Di)(δi − δi). We can further rewrite the estimator as

p̂erf
k

+(s;β,∆n) = max
U

α̂′U + ĉk

γ̂′U + d̂k
s.t. 0 ≤ Ui ≤ 1 for i = 1, . . . , nk,

where α̂ = (α̂1, . . . , α̂n)′, γ̂ = (γ̂1, . . . , γ̂n)′. Applying the Charnes-Cooper transformation with Ũ =
U

γ̂′U+d̂k
, Ṽ = 1

γ̂′U+d̂k
, this linear-fractional program is equivalent to the linear program

p̂erf
k

+(s;β,∆n) = max
Ũ,Ṽ

α̂′Ũ + ĉkṼ

s.t. 0 ≤ Ũi ≤ Ṽ for i = 1, . . . nk,

0 ≤ Ṽ, γ̂′Ũ + Ṽ d̂k = 1.
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A.4.5 Proof of Lemma 5.2

Proof. We first show this result for the fold-specific estimator p̂erf
k

+(s;β,∆) by using the proof strategy
of Proposition 2 in Kallus and Zhou (2021) By Lemma 5.1, recall

p̂erf
k

+(s;β,∆) = max
Ũ,Ṽ

α̂′Ũ + ĉkṼ

s.t. 0 ≤ Ũi ≤ Ṽ for i = 1, . . . nk,

0 ≤ Ṽ, γ̂′Ũ + Ṽ d̂k = 1.

Next, define the dual program associated with this primal linear program. Let Pi be the dual variables
associated with the constraints Ũi ≤ Ṽ , Qi be the dual variables associated with the constraints Ũi ≥ 0,
and λ be the dual variable associated with the constraint γ′Ũ + Ṽ dk = 1. The dual linear program is

min
λ,P,Q

λ

s.t. Pi −Qi + λγ̂i = α̂i,

− 1′P + λd̂k ≥ ĉk,
Pi ≥ 0, Qi ≥ 0 for i = 1, . . . , n,

where 1 is the vector of all ones of appropriate dimension. By re-arranging the first constraint and
substituting in the expressions for α̂i, γ̂i, we observe that

Pi −Qi = (β0 − λ)(1−Di)(δi − δi).

By complementary slackness, at most only one of Pi or Qi will be non-zero at the optimum, and so
combined with the previous display, this implies

Pi = max{β0,i − λ, 0}(1−Di)(δi − δi),
Qi = max{λ− β0,i, 0}(1−Di)(δi − δi).

Next, notice that the constraint −1′P + λd̂k ≥ ĉk must be tight at the optimum. Plugging in the
previous expression for Pi and the expressions for ĉk, d̂k, this is implies that λ satisfies

− Ekn[max{β0,i − λ, 0}(1−Di)(δi − δi)] = Ekn[(β0,i − λ) (φ1(Yi; η̂−k) + (1−Di)δi)].

Finally, we consider three separate cases:

1. Suppose that λ ≥ maxi : Ki=k β0,i. From the previous display, λ must satisfy

0 = Ekn[(β0,i − λ) (φ1(Yi; η̂−k) + (1−Di)δi)] =⇒ λ =
Ekn[β0,i (φ1(Yi; η̂−k) + (1−Di)δi)]

Ekn[φ1(Yi; η̂−k) + (1−Di)δi]
.

At this value for λ, the expressions for Pi, Qi imply that Pi = 0, Qi > 0 for all i. By complementary
slackness, this in turn implies that Ũi = 0, or equivalently Ui = 0 for all i.

2. Suppose that λ ≤ mini : Ki=k β0,i. From the previous display, λ must satisfy

−Ekn[(β0,i − λ)(1−Di)(δi − δi)] = Ekn[(β0,i − λ) (φ1(Yi; η̂−k) + (1−Di)δi)]

=⇒ λ =
Ekn[β0,i

(
µY |1(Xi) + (1−Di)δi

)
]

Ekn[φ1(Yi; η̂−k) + (1−Di)δi]
.
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At this value for λ, the expressions for Pi, Qi imply that Pi > 0, Qi = 0 for all i. By complementary
slackness, this implies that Ũi = Ṽ , or equivalently Ui = 1 for all i.

3. Suppose that mini : Ki=k β0,i < λ < maxi : Ki=k β0,i. Then, β0,(j) < λ ≤ β0,(j+1) for some j where
β0,(1), . . . , β0,(nk) are the order statistics of the sample outcomes. The expressions for Pi, Qi in
turn imply that Qi > 0 only when β0,i ≤ β0,(k) (in which case Ui = 0) and Pi > 0 only when
β0,i ≥ β0,(k+1) (in which case Ui = 1).

Therefore, in all three cases, the optimal solution is such that there exists a non-decreasing function
u(·) : R→ [0, 1] such that Ui = u(β0,i) attains the upper bound.

We next prove the result for the population bound perf+(s;β,∆) via a similar argument. Applying
the same change-of-variables, we rewrite the population bound as

perf+(s;β,∆) := sup
U(·) : X→[0,1]

E[β0,iµ1(Xi) + β0,iπ0(Xi)δi + β0,iπ0(Xi)(δi − δi)U(Xi)]

E[µ1(Xi) + π0(Xi)δi + π0(Xi)(δi − δi)U(Xi)]
.

Define c := E[β0,iµ1(Xi) + β0,iπ0(Xi)δi], d := E[µ1(Xi) + π0(Xi)δi], and α(x) := β0(x; s)π0(x)(δ(x) −
δ(x)), γ(x) := π0(x)(δ(x)−δ(x)). Letting 〈f, g〉P (·) denote the inner product E[f(Xi)g(Xi)] for functions
f, g : X → R, we can further rewrite the population bound as

perf+(s;β,∆) := sup
U(·) : X→[0,1]

c+ 〈α,U〉P (·)

d+ 〈γ, U〉P (·)
.

Define the change-of-variables Ũ(·) = U(·)
d+〈γ,U〉P (·)

and Ṽ = 1
〈γ,U〉P (·)

. The previous linear-fractional

optimization is equivalent to

sup
Ũ(·),Ṽ

〈α, Ũ〉P (·) + cṼ

s.t. 0 ≤ Ũ(x) ≤ Ṽ for all x ∈ X ,
〈γ, Ũ〉P (·) + Ṽ d = 1.

Define the dual associated with this primal program. Let P̃ (x) be the dual function associated with
the constraint Ũ(x) ≤ Ṽ , Q̃(x) be the dual variables associated with the constraints Ũ(x) ≥ 0, and λ
be the dual variable associated with the constraint 〈γ, Ũ〉P (·) + Ṽ d = 1. The dual is

inf
λ,P̃ (·),Q̃(·)

λ

s.t.P̃ (x)− Q̃(x) + λγ(x) = α(x) for all x ∈ X
− 〈1, P̃ 〉P (·) + λd ≥ c
P̃ (x) ≥ 0, Q̃(x) ≥ for all x ∈ X .

By complementary slackness, at most only one of P̃ (x) or Q̃(x) can be non-zero at the optimum for all
x ∈ X . Therefore, by re-arranging the first constraint and substituting in for α(x), γ(x), we observe

P̃ (x)− Q̃(x) = (β0(x)− λ)π0(x)(δ(x)− δ(x)),

which in turn implies that

P̃ (x) = max{β0(x)− λ, 0}π0(x)(δ(x)− δ(x)),

Q̃(x) = max{λ− β0(x), 0}π0(x)(δ(x)− δ(x)).

51



Furthermore, the constraint 〈1, P̃ 〉P (·) +λd ≥ c must be tight at the optimum. Plugging in the previous

expression for P̃ (·), this is implies that λ satisfies

− E[max{β0(Xi)− λ, 0}π0(Xi)(δ(Xi)− δ(Xi))] = E[(β0(Xi)− λ)(µ1(Xi) + π0(Xi)δ(Xi)].

As in the proof for the estimator, we can consider three cases: (i) λ ≥ β0, (ii) λ ≤ β
0

and (iii)

β
0
< λ < β0 for β

0
:= infx∈X β0(x), β0 = supx∈X β0(x). In each case, the optimal solution is such that

there exists a non-decreasing function u(·) : R → [0, 1] such that U(x) = u(β0(x)) attains the upper
bound.

A.4.6 Proof of Theorem 5.2

Proof. To ease notation, let p̂erf
k

+ := Ekn[β0,iφ1(Yi; η̂−k) + β0,i(1 −Di)δ̃i]/Ekn[φ1(Yi; η̂−k) + (1 −Di)δ̃i].
To prove this result, first observe that∥∥∥∥p̂erf

k

+(s;β,∆n)− perf+(s;β,∆)

∥∥∥∥ =

∥∥∥∥∥ sup
δ̃∈∆M

n

p̂erf
k

+(s;β, δ̃)− sup
δ̃∈∆M

perf+(s;β, δ̃)

∥∥∥∥∥
=

∥∥∥∥∥ sup
δ̃∈∆M

p̂erf
k

+(s;β, δ̃)− sup
δ̃∈∆M

perf+(s;β, δ̃)

∥∥∥∥∥
≤ sup

δ̃∈∆M

∥∥∥p̂erf
k

+(s;β, δ̃)− perf+(s;β, δ̃)
∥∥∥ ,

where the first equality uses Lemma 5.2. Furthermore, for any δ̃ ∈ ∆M , we have that

p̂erf
k

+(s;β, δ̃)− perf+(s;β, δ̃) =

Ekn[β0,iφY |1(Yi; η̂−k) + β0,i(1−Di)δ̃i]

Ekn[φY |1(Yi; η̂−k) + (1−Di)δ̃i]
−

E[β0,iφY |1(Yi; η̂−k) + β0,i(1−Di)δ̃i]

E[φY |1(Yi; η̂−k) + (1−Di)δ̃i]
=

Ekn[(1)]

Ekn[(2)]
− E[(3)]

E[(4)]
= Ekn[(2)]−1

{
Ekn[(1)]− E[(3)]− E[(3)]

E[(4)]
(Ekn[(2)]− E[(4)])

}
,

where

Ekn[(1)]− E[(3)] = Ekn[β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δ̃i]− E[β0,iφ1(Yi; η) + β0,i(1−Di)δ̃i]

=
(
Ekn[β0,iφ1(Yi; η̂−k)]− E[β0,iφ1(Yi; η)]

)
+ (Ekn − E)[β0,i(1−Di)δ̃i]

Ekn[(2)]− E[(4)] = Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i]− E[φ1(Yi; η) + (1−Di)δ̃i]

=
(
Ekn[φ1(Yi; η̂−k)]− E[φ1(Yi; η)]

)
+ (Ekn − E)[(1−Di)δ̃i].

Furthermore, observe that

Ekn[(2)] = Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i] ≥ Ekn[φ1(Yi; η̂−k) + (1−Di)δ̃i]

E[(3)] = E[β0,iφ1(Yi; η) + β0,i(1−Di)δ̃i] ≤ E[β0,iφ1(Yi; η) + β0,i(1−Di)δi]

E[(4)] = E[µ1(Xi) + (1−Di)δ̃i] ≥ E[µ1(Xi) + (1−Di)δi].

Therefore, there exists C1 > 0 such that En[(2)] > C1 for all n under the assumption of bounded
nuisance parameter estimates. There also exists constants C2 <∞, C3 > 0 such that E[(3)] < C2 and
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E[(4)] > C3. Putting this together, we therefore have∥∥∥∥p̂erf
k

(s;β,∆n)− perf+(s;β,∆)

∥∥∥∥ ≤
C1

∥∥∥∥∥∥∥Ekn[β0,iφ1(Yi; η̂−k)]− E[β0,iφ1(Yi; η)]︸ ︷︷ ︸
(a)

∥∥∥∥∥∥∥+ C1 sup
δ̃∈∆M

∥∥∥(Ekn − E)[β0,i(1−Di)δ̃i]
∥∥∥︸ ︷︷ ︸

(b)

+

C1
C2

C3

∥∥∥∥∥∥∥Ekn[φ1(Yi; η̂−k)]− E[φ1(Yi; η)]︸ ︷︷ ︸
(c)

∥∥∥∥∥∥∥+ C1
C2

C3
sup
δ̃∈∆M

∥∥∥(Ekn − E)[(1−Di)δ̃i]
∥∥∥︸ ︷︷ ︸

(d)

.

We analyze each term separately. From the proof of Theorem 5.1, we showed that (a), (c) areOP(1/
√
n+

R1,n). Consider (b), which we may write out as

sup
δ̃∈∆M

∣∣∣∣∣∣n−1
k

∑
i : Ki=k

(1−Di)β0,iδ̃(β0,i)− E[(1−Di)β0,iδ̃(β0,i)]

∣∣∣∣∣∣ .
Define f(a, b) = ab, and F = {fδ̃}δ̃∈∆M to be the class of functions fδ̃ : (d, β)→ (1− d)βδ̃(β). Observe
that f is a contraction in its second argument over {0, 1}× [0, 1]. Observe that we can then rewrite (b)
as

sup
fδ̃∈F

∣∣∣∣∣∣n−1
k

∑
i : Ki=k

fδ̃(Di, β0,i)− E[fδ̃(Di, β0,i)]

∣∣∣∣∣∣ .
Applying a standard concentration inequality (e.g., Theorem 4.10 in Wainwright (2019)), we observe
that, with probability at least 1− δ,

sup
fδ̃∈F

∣∣∣∣∣∣n−1
k

∑
i : Ki=k

fδ̃(Di, β0,i)− E[fδ̃(Di, β0,i)]

∣∣∣∣∣∣ ≤ Rn(F) +

√
2 log(1/δ)

nk
,

where Rn(F) is the Rademacher complexity of F . Now we relate Rn(F) to Rn(∆M ). For any fixed
tuples (d1, β0,1), . . . , (dnk , β0,nk), observe that

Eε[ sup
δ̃∈∆M

∣∣∣∣∣
nk∑
i=1

εif(di, δ̃(β0,i))

∣∣∣∣∣] = Eε[ sup
δ̃∈∆M

∣∣∣∣∣
nk∑
i=1

εi(1− di)δ̃(β0,i)

∣∣∣∣∣]
≤ 2Eε[ sup

δ̃∈∆M

∣∣∣∣∣
nk∑
i=1

εiδ̃(β0,i)

∣∣∣∣∣]
where the inequality applies the Ledoux-Talagrand contraction inequality (e.g., Eq. (5.61) in Wain-
wright (2019)). Dividing by n and averaging over the tuples yields Rn(F) ≤ 2Rn(∆M ). Finally, we
can bound the Rademacher complexity of ∆M using Dudley’s entropy integral (e.g., Theorem 5.22
Wainwright (2019)) as

Rn(∆M ) ≤ C
√
nk

∫ 1

0

√
log(N(ξ,∆M , ‖ · ‖Pn))dξ ≤ C

√
nk

∫ 1

0

√
log(N[](2ξ,∆M , ‖ · ‖Pn))dξ,
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for some constant C, where N(ξ,∆M , ‖ · ‖Pn) is the covering number and N[](2ξ,∆
M , ‖ · ‖pn) is the

bracketing number. But, Theorem 2.7.5 of van der Vaart and Wellner (1996) establishes that the
bracketing entropy log(N[](ξ,∆

M , ‖ · ‖Pn) of the class of monotone non-decreasing functions is bounded

by (1/ξ) log(1/ξ), and so
∫ 1

0

√
log(N[](ξ,∆M , ‖ · ‖Pn))dξ =

√
2π. It follows that, for any δ > 0,

sup
δ̃∈∆M

∣∣∣Ekn[(1−Di)β0,iδ̃(Xi)]− E[(1−Di)β0,iδ̃(Xi)]
∣∣∣ ≤ C
√
nk

+

√
2 log(1/δ)

2nk

holds with probability 1− δ. We therefore conclude that (b) is OP(1/
√
n). Similarly, (d) is OP(1/

√
n)

by the same argument. This proves the result for any fold k. The claim in the Theorem follows by
averaging over the folds.

A.4.7 Proof of Proposition 5.3

Proof. Applying the change-of-variables in the Proof of Lemma 5.1, we notice that

p̂erf
k

+(s;β,∆n) := max
0≤U≤1

∑nk
i=1 β0,iφ1(Yi; η̂) + β0,i(1−Di)δi + β0,i(1−Di)(δi − δi)Ui∑nk

i=1 φ1(Yi; η̂) + (1−Di)δi + (1−Di)(δi − δi)Ui

p̂erf
k

+(s;β, ∆̂n) := max
0≤U≤1

∑nk
i=1 β0,iφ1(Yi; η̂) + β0,i(1−Di)δ̂i + β0,i(1−Di)(δ̂i − δ̂i)Ui∑nk

i=1 φ1(Yi; η̂) + (1−Di)δ̂i + (1−Di)(δ̂i − δ̂i)Ui
.

We can therefore rewrite

‖p̂erf
k

+(s;β, ∆̂n)− p̂erf
k

+(s;β,∆n)‖ ≤

max
0≤U≤1

∥∥∥∥∥∥
∑n

i=1 β0,iφ1(Yi; η̂) + β0,i(1−Di)δ̂i + β0,i(1−Di)(
ˆ
δi − δ̂i)Ui∑n

i=1 φ1(Yi; η̂) + (1−Di)δ̂i + (1−Di)(
ˆ
δi − δ̂i)Ui

−
∑n

i=1 β0,iφ1(Yi; η̂) + β0,i(1−Di)δi + β0,i(1−Di)(δi − δi)Ui∑n
i=1 φ1(Yi; η̂) + (1−Di)δi + (1−Di)(δi − δi)Ui

∥∥∥∥∥∥ =

max
0≤U≤1

‖E
k
n[(1)]

Ekn[(2)]
− Ekn[(3)]

Ekn[(4)]
‖ = max

0≤U≤1
En[(2)]−1


(
Ekn[(1)]− Ekn[(3)]

)
︸ ︷︷ ︸

(a)

−Ekn[(3)]

Ekn[(4)]

(
Ekn[(2)]− Ekn[(4)]

)
︸ ︷︷ ︸

(b)

 .

Notice that we can rewrite (a), (b) as

(a) = Ekn[β0,i(1−Di)(δ̂i − δi)(1− Ui) + β0,i(1−Di)(δ̂i − δi)Ui]

(b) = Ekn[(1−Di)(δ̂i − δi)(1− Ui) + (1−Di)(δ̂i − δi)Ui].

Furthermore, notice that

Ekn[(2)] ≥ Ekn[φ1(Yi; η̂) + (1−Di)δi] for all n,

Ekn[(3)] ≤ Ekn[β0,iφ1(Yi; η̂) + β0,i(1−Di)δi] for all n,

Ekn[(4)] ≤ Ekn[φ1(Yi; η̂) + (1−Di)δi] for all n.

So, there exists a constant 0 < C1 such that En[(2)] > C1 for all n under the assumption of bounded
nuisance parameter estimators and the assumption on the estimated bounds and there exists constants
0 < C2 < ∞, C3 > 0 such that E[(3)] < C2, E[(4)] > C3 under the assumption of bounded nuisance
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parameter estimators. Putting this together implies that

‖p̂erf
k

+(s;β, ∆̂n)− p̂erf
k

+(s;β,∆n)‖ .

max
0≤U≤1

‖En[β0,i(1−Di)(δ̂i−δi)(1−Ui)+β0,i(1−Di)(δ̂i−δi)Ui]‖+‖En[(1−Di)(δ̂i−δi)(1−Ui)+(1−Di)(δ̂i−δi)Ui]‖ ≤

max
0≤U≤1

n−1
k

nk∑
i=1

‖β0,i(1−Di){(δ̂i−δi)(1−Ui)+(δ̂i−δi)Ui}‖+n−1
k

nk∑
i=1

‖(1−Di){(δ̂i−δi)(1−Ui)+(δ̂i−δi)Ui}‖ ≤

max
0≤U≤1

n−1
k

nk∑
i=1

‖(δ̂i−δi)(1−Ui)+(δ̂i−δi)Ui‖+n−1
k

nk∑
i=1

‖(δ̂i−δi)(1−Ui)+(δ̂i−δi)Ui}‖ . Enk [|δ̂i−δi|]+Enk [|δ̂i−δi|].

Then, using the inequality ‖v‖1 ≤
√
nk‖v‖2 for v ∈ Rnk , it follows that

‖p̂erf
k

+(s;β, ∆̂n)− p̂erf
k

+(s;β,∆n)‖ .

√√√√ 1

nk

nk∑
i=1

(δ̂i − δi)2 +

√√√√ 1

nk

nk∑
i=1

(δ̂i − δi)2.

A.4.8 Proof of Corollary 5.1

Proof. By Proposition 5.3, it suffices to show that ‖φ1(Yi; η̂−k) − φ1(Yi; η)‖L2(Pkn) = oP(1) under the
stated conditions. Following the proof of Lemma B.5, we observe that

‖φ1(Yi; η̂−k)− φ1(Yi; η)‖L2(Pkn) ≤

OP(‖π̂1 − π1‖L2(P)‖Yi − µ1‖L2(P) + ‖π̂1 − π1‖L2(P)‖µ1 − µ̂1‖L2(P) + ‖µ1 − µ̂1‖L2(P)).

The result then follows by the stated rate conditions.

A.5 Section 8: connections to existing sensitivity analysis models

A.5.1 Proof of Proposition 8.1

Proof. For brevity, we omit the conditioning on Xi throughout the proof. Consider the first claim.
Notice that by Bayes’ rule, P(Di=1|Yi(1),Yi(0))P(Di=0)

P(Di=0|Yi(1),Yi(0))P(Di=1) = P(Yi(1),Yi(0)|Di=1)
P(Yi(1),Yi(0)|Di=0) . The MSM therefore implies

bounds

Λ ≤ P(Yi(1), Yi(0) | Di = 1)

P(Yi(1), Yi(0) | Di = 0)
≤ Λ,

which can be equivalently written as

Λ
−1P(Yi(1), Yi(0) | Di = 1) ≤ P(Yi(1), Yi(0) | Di = 0) ≤ Λ−1P(Yi(1), Yi(0) | Di = 1).

Since P(Yi(1) = 1 | Di = 0) = P(Yi(0) = 0, Yi(1) = 1 | Di = 0) + P(Yi(0) = 1, Yi(1) = 1 | Di = 0), it
then follows that

Λ
−1P(Yi(1) = 1 | Di = 1) ≤ P(Yi(1) = 1 | Di = 0) ≤ Λ−1P(Yi(1) = 1 | Di = 1).

Adding and subtracting P(Yi(1) = 1 | Di = 1) then delivers the first claim.
Consider the second claim. The MOSM under nonparametric outcome regression bounds implies

that

Γ
−1 ≤ P(Yi(1) = 1 | Di = 1)

P(Yi(1) = 1 | Di = 0)
≤ Γ−1.
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But, by Bayes’ rule, P(Yi(1)=1|Di=1)
P(Yi(1)=1|Di=0) = P(Di=1|Yi(1)=1)P(Di=0)

P(Di=0|Yi(1)=1)P(Di=1) , and so the MOSM implies the bounds

Γ
−1 ≤ P(Di = 1 | Yi(1) = 1)P(Di = 0)

P(Di = 0 | Yi(1) = 1)P(Di = 1)
≤ Γ−1.

Further, the MOSM implies

Γ− 1

ΓP(Yi(1) = 0 | Di = 0)
+

1

Γ
≤ P(Yi(1) = 0 | Di = 1)

P(Yi(1) = 0 | Di = 0)
≤ Γ− 1

ΓP (Yi(1) | Di = 0)
+

1

Γ
.

Applying the analogous identity P(Yi(1)=0|Di=1)
P(Yi(1)=0|Di=0) = P(Di=1|Yi(1)=0)P(Di=0)

P(Di=0|Yi(1)=0)P(Di=1) then delivers

Γ− 1

ΓP(Yi(1) = 0 | Di = 0)
+

1

Γ
≤ P(Di = 1 | Yi(1) = 0)P(Di = 0)

P(Di = 0 | Yi(1) = 0)P(Di = 1)
≤ Γ− 1

ΓP (Yi(1) | Di = 0)
+

1

Γ
.

But since the MOSM also implies that 1−Γµ1(x) ≤ P(Yi(0) = 1 | Di = 1) ≤ 1−Γµ1(x), we can plug-in
to deliver the final bounds

Γ− 1

Γ(1− Γµ1(x))
+

1

Γ
≤ P(Di = 1 | Yi(1) = 0)P(Di = 0)

P(Di = 0 | Yi(1) = 0)P(Di = 1)
≤ Γ− 1

Γ(1− Γµ1(x))
+

1

Γ

This completes the proof of the second claim.

A.5.2 Proof of Proposition 8.2

Proof. For brevity, we omit the conditioning on Xi throughout the proof. To show the first claim, as
a first step, apply Bayes’ rule and observe that

P(Yi(1), Yi(0) | Di = 1)

P(Yi(1), Yi(0) | Di = 0)
=

P(Di = 1 | Yi(1), Yi(0))P(Di = 0)

P(Di = 0 | Yi(1), Yi(0))P(Di = 1)
.

Then, further notice that

P(Di = 0)

P(Di = 1)
=

∑
(y0,y1)∈{0,1}2 P (Di = 0 | Yi(0) = y0, Yi(1) = y1)P (Yi(0) = y0, Yi(1) = y1)∑
(y0,y1)∈{0,1}2 P (Di = 1 | Yi(0) = y0, Yi(1) = y1)P (Yi(0) = y0, Yi(1) = y1)

Letting (y∗0, y
∗
1) = arg max(y0,y1)∈{0,1}2

P (Di=0|Yi(0)=y0,Yi(1)=y1)
P (Di=1|Yi(0)=y0,Yi(1)=y1) , the quasi-linearity of the ratio function

implies that∑
(y0,y1)∈{0,1}2 P (Di = 0 | Yi(0) = y0, Yi(1) = y1)P (Yi(0) = y0, Yi(1) = y1)∑
(y0,y1)∈{0,1}2 P (Di = 1 | Yi(0) = y0, Yi(1) = y1)P (Yi(0) = y0, Yi(1) = y1)

≤ P (Di = 0 | Yi(0) = y∗0, Yi(1) = y∗1)

P (Di = 1 | Yi(0) = y∗0, Yi(1) = y∗1)
.

This then implies that, for any (y0, y1) ∈ {0, 1}2,

P(Yi(1) = y1, Yi(0) = y0 | Di = 1)

P(Yi(1) = y1, Yi(0) = y0 | Di = 0)
≤ P(Di = 1 | Yi(1) = y1, Yi(0) = y0)

P(Di = 0 | Yi(1) = y1, Yi(0) = y0)

P (Di = 0 | Yi(0) = y∗0, Yi(1) = y∗1)

P (Di = 1 | Yi(0) = y∗0, Yi(1) = y∗1)
≤ Γ,

where the last inequality is implied by Rosenbaum’s sensitivity analysis model (23). From this, we
follow the same argument as the proof of Proposition 8.1 to show that δ(x) = (Γ− 1)µ1(x). The proof
for the lower bound follows an analogous argument.

The second claim is an immediate consequence of claim (ii) in Proposition 8.1.
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B Auxiliary lemmas

B.1 An oracle inequality for pseudo-outcome regression

In this section, we provide a model-free oracle inequality on the L2(P)-error of nonparametric regression
with estimated pseudo-outcomes. This generalizes the analysis of pseudo-outcome regressions provided
in Kennedy (2022b). In the main text, we apply this oracle inequality to the DR-Learners.

We state an L2(P)-stability condition required on the second-stage regression estimator, extending
the pointwise stability condition in Kennedy (2022b).

Assumption B.1. Suppose Otrain = (V01, . . . , V0n) and Otest = (V1, . . . , Vn) are independent train
and test sets with covariate Xi ⊆ Vi. Let (i) f̂(w) := f̂(w;Otrain) be an estimate of a function f(w)
using the training data Otrain; (ii) b̂(x) = E[f̂(Vi) − f(Vi) | Xi = x,Otrain] be the conditional bias of
the estimator f̂ ; and (iii) Ên[Vi | Xi = x] be a generic regression estimator that regresses outcomes
(V1, . . . , Vn) on covariates (X1, . . . , Xn) in the test sample Otest.

The regression estimator Ên[·] is L2(P)-stable with respect to a distance metric d(·, ·) if

∫ [
Ên{f̂(Vi) | Xi = x} − Ên{f(Vi) | Xi = x} − Ên{b̂(Xi) | Xi = x}

]2
dP(x)

E
(∫ [

Ên{f(Vi) | Xi = x} − E{f(Vi) | Xi = x}
]2
dP(x)

) p−→ 0 (24)

whenever d(f̂ , f)
p−→ 0.

The L2(P)-stability condition on the second-stage pseudo-outcome regression estimator is quite mild
in practice. We next show that the L2(P)-stability condition is satisfied by a variety of generic linear
smoothers such as linear regression, series regression, nearest neighbor matching, random forest model
and several others. This extends Theorem 1 of Kennedy (2022b), which shows that linear smoothers
satisfy an analogous pointwise stability condition.

Proposition B.1. Linear smoothers of the form Ên{f̂(Vi) | Xi = x} =
∑

iwi(x;Xn)f̂(Vi) are L2(P)-
stable with respect to distance

d(f̂ , f) = ‖f̂ − f‖w2 ≡
n∑
i=1

{
‖wi(·;Xn)‖2∑
j ‖wj(·;Xn)‖2

}∫ {
f̂(v)− f(v)

}2
dP(v | Xi),

whenever 1/‖σ‖w2 = OP(1) for σ(x)2 = V ar{f(Vi) | Xi = x}.

Proof. The proof follows an analogous argument as Theorem 1 of Kennedy (2022b). Letting Tn(x) =
m̂(x) − m̃(x) − Ên{b̂(X) | X = x} denote the numerator of the left-hand side of (24), and R2

n =
E[‖m̃−m‖]2 denote the oracle error, we will show that

‖Tn‖ = OP

(
‖f̂ − f‖w2

‖σ‖w2

Rn

)

which yields the result when 1/‖σ‖w2 = OP(1).
First, note that for linear smoothers

Tn(x) = Ên{f̂(Vi)− f(Vi)− b̂(Xi) | Xi = x} =
n∑
i=1

wi(x;Xn)
{
f̂(Vi)− f(Vi)− b̂(Xi)

}
and this term has mean zero since

E
{
f̂(Vi)− f(Vi)− b̂(Xi) | Otrain, Xn

}
= E

{
f̂(Vi)− f(Vi)− b̂(Xi) | Otrain, Xi

}
= 0
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by definition of b̂ and iterated expectation. Therefore,

E(Tn(x)2 | Otrain, Xn) = V ar

[
n∑
i=1

wi(x;Xn)
{
f̂(Vi)− f(Vi)− b̂(Xi)

} ∣∣∣ Otrain, Xn

]

=

n∑
i=1

wi(x;Xn)2 V ar
{
f̂(Vi)− f(Vi) | Otrain, Xi

}
(25)

where the second line follows since f̂(Vi)− f(Vi) are independent given the training data. Thus

E
(
‖Tn‖2

∣∣∣ Otrain, Xn
)

=

∫ n∑
i=1

wi(x;Xn)2 V ar
{
f̂(Vi)− f(Vi) | Otrain, Xi

}
dP(x)

=
n∑
i=1

‖wi(·;Xn)‖2V ar
{
f̂(Vi)− f(Vi) | Otrain, Xi

}
≤

n∑
i=1

‖wi(·;Xn)‖2
∫ {

f̂(v)− f(v)
}2

dP(v | Xi)

= ‖f̂ − f‖w2

∑
j

‖wj(·;Xn)‖2

where the third line follows since V ar(f̂ − f | Otrain, Xi) ≤ E{(f̂ − f)2 | Otrain, Xi}, and the fourth by
definition of ‖ · ‖w2 .

Further note that R2
n equals

E[‖m̃−m‖]2 = E

∫ [ n∑
i=1

wi(x;Xn)
{
f(Vi)−m(Xi)

}
+

n∑
i=1

wi(x;Xn)m(Xi)−m(x)

]2

dP(x)


= E

∫ [ n∑
i=1

wi(x;Xn)
{
f(Vi)−m(Xi)

}]2

dP(x)

+ E

∫ { n∑
i=1

wi(x;Xn)m(Xi)−m(x)

}2

dP(x)


= E

{∫ n∑
i=1

wi(x;Xn)2 σ(Xi)
2 dP(x)

}
+ E

∫ { n∑
i=1

wi(x;Xn)m(Xi)−m(x)

}2

dP(x)


≥ E

n∑
i=1

‖wi(·;Xn)‖2σ(Xi)
2 = E

‖σ‖2w2

∑
j

‖wj(·;Xn)‖2
 (26)

where the second and third lines follow from iterated expectation and independence of the samples,
and the fourth by definition of ‖ · ‖w2 (and since the integrated squared bias term from the previous
line is non-negative).
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Therefore

P

{
‖σ‖w2‖Tn‖
‖f̂ − f‖w2Rn

≥ t

}
= E

[
P

{
‖σ‖w2‖Tn‖
‖f̂ − f‖w2Rn

≥ t
∣∣∣ Otrain, Xn

}]

≤
(

1

t2R2
n

)
E

{
‖σ‖2w2E

(
‖Tn‖2

‖f̂ − f‖2
w2

∣∣∣ Otrain, Xn

)}

≤
(

1

t2R2
n

)
E

{
‖σ‖2w2

n∑
i=1

‖wi(·;Xn)‖2
}
≤ 1

t2

where the second line follows by Markov’s inequality, the third from the bound in (25) and iterated
expectation, and the last from the bound in (26). The result follows since we can always pick t2 = 1/ε
to ensure the above probability is no more than any ε.

We next show that the L2(P)-stability condition and the consistency of f̂ yields an inequality on the
L2(P)-convergence of a feasible pseudo-outcome regression relative to an oracle estimator that regresses
the true unknown function f(Vi) on Xi.

Lemma B.1. Under the same setup from Assumptions B.1, define (i) m(x) = E[f(Vi) | Xi = x] the
conditional expectation of f(Vi) given Xi; (ii) m̂(x) := Ên[f̂(Vi) | Xi = x] the regression of f̂(Vi) on
Xi in the test samples; (iii) m̃(x) := Ên[f(Vi) | Xi = x] the oracle regression of f(Vi) on Xi in the test
samples. Furthermore, let b̃(x) := Ên[b(Vi) | Xi = x] be the Ên-smoothed bias and R2

n = E[‖m̃−m‖]2
be the oracle L2-error. If

i. the regression estimator Ên[·] is L2(P)-stable with respect to distance metric d(·, ·);

ii. d(f̂, f)
p−→ 0,

then
‖m̂− m̃‖ = ‖b̃(·)‖+ oP(Rn).

If further ‖b̃‖ = oP

(√
E‖m̃−m‖2

)
, then m̂ is oracle efficient in the L2-norm, i.e., asymptotically

equivalent to the oracle estimator m̃ in the sense that

‖m̂− m̃‖√
E‖m̃−m‖2

p−→ 0

and
‖m̂−m‖ = ‖m̃−m‖+ oP(Rn).

Proof. Note that

‖m̂− m̃‖ ≤ ‖m̂− m̃− b̃‖+ ‖b̃‖

= ‖b̃‖+ oP

(√
E‖m̃−m‖2

)
where the first line follows by the triangle inequality, and the second by L2(P)-stability and d(·, ·)-
consistency of f̂ .

This generalizes Proposition 1 of Kennedy (2022b), which shows that a pointwise stability condtion and
consistency of f̂ implies an oracle inequality on the pointwise convergence of a feasible pseudo-outcome
regression. In Section 3, we apply Lemma B.1 to analyze the convergence of our proposed DR-Learners
for the target regression bounds under the MOSM.
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B.2 Influence function-based estimators

In this section, we state and prove several auxiliary lemmas that are used in the proofs of the main results
for analyzing the behavior of our influence function-based estimators of the predictive performance
bounds (Section 5).

Lemma B.2. Let β(·) be some function of Xi such that ‖β(·)‖ ≤M for some M <∞ and define the
remainder Rk1,n = ‖µ̂1,−k(·)−µ1(·)‖‖π̂1,−k(·)−π1(·)‖. Assume that there exists ε > 0 s.t. P(π̂1,−k(Xi) ≥
ε) = 1. Then,

E[β(Xi)φ1(Yi; η̂−k)− β(Xi)φ1(Yi; η) | O−k] = OP(Rk1,n).

Proof. We follow the proof of Lemma 3 in Mishler, Kennedy and Chouldechova (2021). Suppressing
the dependence on O−k to ease notation, we observe that

E[β(Xi)φ1(Yi; η̂−k)− β(Xi)φ1(Yi; η)] =

E
[
β(Xi)

(
Di

π̂1(Xi)
(Yi − µ̂1(Xi))−

D

π1(Xi)
(Yi − µ1(Xi)) + (µ̂1(Xi)− µ1(Xi))

)]
(1)
=

E
[
β(Xi)

(
π1(Xi)

π̂1(Xi)
(µ1(Xi)− µ̂1(Xi)) + (µ̂1(Xi)− µ1(Xi)

)]
=

E
[
β(Xi)

(µ̂1(Xi)− µ1(Xi))(π̂1(Xi)− π1(Xi))

π̂1(Xi)

]
(2)

≤

1

ε
E[β(Xi)(µ̂1(Xi)− µ1(Xi))(π̂1(Xi)− π1(Xi))],

where (1) follows by iterated expectations and (2) by the assumption of a bounded propensity score
estimator. The result follows by applying the Cauchy-Schwarz inequality and using ‖β(·)‖ ≤ M to
conclude that ‖E[β(Xi)φ1(Yi; η̂)− β(Xi)φ1(Yi; η)]‖ = OP(Rk1,n).

Lemma B.3 (Lemma 2 in Kennedy, Balakrishnan and G’Sell (2020)). Let φ̂(Xi) be a function estimated
from a sample Oi ∼ P (·) i.i.d. for i = 1, . . . , N and let En[·] denote the empirical average over another
independent sample Oj ∼ P (·) i.i.d. for j = N + 1, . . . , n. Then,

En[φ̂(Xi)− φ(Xi)]− E[φ̂(Xi)− φ(Xi)] = OP

(
‖φ̂(·)− φ(·)‖√

n

)
.

Lemma B.4. Let β(·) be some function of Xi such that ‖β(·)‖ ≤ M for some M < ∞. Let φ̂(Oi) be
a function estimated from a sample Oi ∼ P (·) i.i.d. for i = 1, . . . , N and let En[·] denote the empirical
average over another independent sample Oj ∼ P (·) i.i.d. for j = N + 1, . . . , n. Then,

En[β(Xi)φ̂(Oi)− β(Xi)φ(Oi)]− E[β(Xi)φ̂(Oi)− β(Xi)φ(Oi)] = OP

(
‖φ̂(·)− φ(·)‖√

n

)
.

Proof. The proof follows the same argument as the proof of Lemma 2 in Kennedy, Balakrishnan and
G’Sell (2020). Observe that, conditional on the estimation sample Oest = {Oi}Ni=1, E{En[β(Xi)(φ̂(Oi)−
φ(Oi))] | Oest} = E[β(Xi)(φ̂(Oi)−φ(Oi)) | Oest] = E[β(Xi)(φ̂(Oi)−φ(Oi))]. Next, observe that the con-

ditional variance is V
{

(En − E)[β(Xi)(φ̂(Oi)− φ(Oi))] | Oest
}

= V
{
En[β(Xi)(φ̂(Oi)− φ(Oi))] | Oest

}
=

n−1V (β(Xi)(φ̂(Oi) − φ(Oi)) | Oest) ≤ M‖φ̂(·) − φ(·)‖/n. The result then follows by applying Cheby-
shev’s inequality.
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Lemma B.5 (Convergence of plug-in influence function estimator φ1(Yi; η̂)). Define the remainder
‖µ̂1,−k(·)− µ1(·)‖‖π̂1,−k(·)− π1(·)‖ = Rk1,n. Assume (i) there exists δ > 0 such that P(π1(Xi) ≥ δ) = 1;
(ii) there exists ε > 0 such that P(π̂1−k(Xi) ≥ ε) = 1; and (iii) ‖µ̂1,−k(·) − µ1(·)‖ = oP (1) and
‖π̂1−k(·)− π1(·)‖ = oP (1). Then,

‖φ1(·; η̂−k)− φ1(·; η)‖ = OP (Rk1,n).

Proof. This result follows directly from the stated conditions after some algebra. Suppressing depen-
dence on −k to ease notation, observe that we can rewrite

‖φ1(·; η̂)− φ1(·; η)‖ =∥∥∥∥ Di

π̂1(Xi)
(Yi − µ̂1(Xi))−

Di

π1(Xi)
(Yi − µ1(Xi)) + (µ1(Xi)− µ̂1(Xi))

∥∥∥∥ (1)
=∥∥∥∥ Di

π1(Xi)

π1(Xi)− π̂1(Xi)

π̂1(Xi)
(Yi − µ̂1(Xi))−

Di

π1(Xi)
(µ̂1(Xi)− µ1(Xi)) + (µ̂1(Xi)− µ1(Xi))

∥∥∥∥ (2)

≤∥∥∥∥ Di

π1(Xi)

π1(Xi)− π̂1(Xi)

π̂1(Xi)
(Yi − µ1(Xi))

∥∥∥∥+

∥∥∥∥ Di

π1(Xi)

π1(Xi)− π̂1(Xi)

π̂1(Xi)
(µ1(Xi)− µ̂1(Xi))

∥∥∥∥+∥∥∥∥ Di

π1(Xi)
(µ̂1(Xi)− µ1(Xi))

∥∥∥∥+ ‖(µ̂1(Xi)− µ1(Xi))‖
(3)

≤

‖Di‖
δ

‖π1 − π̂1‖
ε

‖Yi − µ1(Xi)‖+
‖Di‖
δ

‖π1 − π̂1‖
ε

‖µ̂1 − µ1‖+

‖Di‖
δ
‖µ̂1 − µ1‖+ ‖µ̂1 − µ1‖

(4)
= oP (1) +OP (Rk1,n) + oP (1) + oP (1) = OP (Rk1,n)

where (1) follows by adding and subtracting Di
π1(Xi)

(Yi− µ̂1(Xi)), (2) follows by adding and subtracting

Di
π1(Xi)

π1(Xi)−π̂1(Xi)
π̂1(Xi)

µ1(Xi) and applying the triangle inequality, (3) applies the assumption of strict

overlap and bounded propensity score estimator, and (4) follows by application of the stated rate
conditions.

Lemma B.6 (Convergence of plug-in influence function estimator φ(π0(Xi)µ1(Xi); η̂)). Define the
remainder ‖µ̂1,−k(·) − µ1(·)‖‖π̂1,−k(·) − π1(·)‖ = Rk1,n. Assume that (i) there exists δ > 0 such that
P(π1(Xi) ≥ δ) = 1; (ii) there exists ε > 0 such that P(π̂1,−k(Xi) ≥ ε) = 1; and (iii) ‖µ̂1,−k(·)−µ1(·)‖ =
oP (1) and ‖π̂1,−k(·)− π1(·)‖ = oP (1). Then,

‖φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η)‖ = OP(Rk1,n)

Proof. This result follows directly from the stated conditions after some simple algebra. For ease of
notation, we omit the dependence on Xi and −k. Observe that we can rewrite

‖φ(π0(Xi)µ1(Yi); η̂)− φ(π0(Xi)µ1(Yi); η̂)‖ =

‖((1−Di)− π̂0)µ̂1 +
Di

π̂1
(Yi − µ̂1)π̂0 + π̂0µ̂1 − ((1−Di)− π0)µ1 −

Di

π1
(Yi − µ1)π0 − π0µ1‖

(1)
=

‖((1−Di)− π̂0)µ̂1 +
Di

π1

π1 − π̂1

π̂1
(Yi − µ̂1) +

Di

π1
π0(µ1 − µ̂1) + π̂0µ̂1 − π0µ1‖

(2)

≤

‖Di

π1

π1 − π̂1

π̂1
(Yi − µ1) +

Di

π1

π1 − π̂1

π̂1
(µ1 − µ̂1) +

Di

π1
π0(µ1 − µ̂1) + ((1−Di)− π̂0)µ̂1 + π̂0µ̂1 − π0µ1‖

(3)
=
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‖Di

π1

π1 − π̂1

π̂1
(Yi−µ1)+

Di

π1

π1 − π̂1

π̂1
(µ1−µ̂1)+

Di

π1
π0(µ1−µ̂1)+((1−Di)−π̂0)(µ̂1−µ1)+(π0−π̂0)µ1+π̂0µ̂1−π0µ1‖

(4)

≤

‖Di

π1

π1 − π̂1

π̂1
(Yi−µ1)+

Di

π1

π1 − π̂1

π̂1
(µ1−µ̂1)+

Di

π1
π0(µ1−µ̂1)+((1−Di)−π0)(µ̂1−µ1)+(π0−π̂0)(µ̂1−µ1)+(π0−π̂0)µ1‖+

+‖π̂0µ̂1 − π0µ1‖
(5)
=

‖Di

π1

π1 − π̂1

π̂1
(Yi−µ1)+

Di

π1

π1 − π̂1

π̂1
(µ1−µ̂1)+

Di

π1
π0(µ1−µ̂1)+((1−Di)−π0)(µ̂1−µ1)+(π0−π̂0)(µ̂1−µ1)+(π0−π̂0)µ1‖+

‖π̂0(µ̂1 − µ1)− µ1(π0 − π̂0)‖

where (1) follows by adding/subtracting Di
π1

(Yi − µ̂1), (2) follows by adding/subtracting Di
π1

π1−π̂1
π̂1

µ1,
(3) follows by adding/subtracting µ1((1 − Di) − π̂0), (4) follows by adding/subtracting π0(µ̂1 − µ1)
and applying the triangle inequality once, and (5) follows by adding/subtracting π̂0µ1. We then again
apply the triangle inequality and use the assumptions of strict overlap and bounded propensity score
estimator to arrive at

≤ 1

εδ
‖π̂1 − π1‖‖Yi − µ1‖+

1

εδ
‖π̂1 − π1‖‖µ1 − µ̂1‖+

1− δ
δ
‖µ1 − µ̂1‖+ ‖(1−Di)− π0‖‖µ̂1 − µ1‖+

‖π̂1 − π1‖‖µ̂1 − µ1‖+ ‖π̂1 − π1‖‖µ1‖+ (1− ε)‖µ̂1 − µ1‖+ ‖µ1‖‖π̂1 − π1‖.

The result then follows by applying the stated rate conditions.

Lemma B.7. Let β(·) be some function of Xi such that ‖β(·)‖ ≤M for some M <∞ and define the
remainder Rk1,n = ‖µ̂1,−k(·)−µ1(·)‖‖π̂1,−k(·)−π1(·)‖. Assume that there exists ε > 0 s.t. P(π̂1,−k(Xi) ≥
ε) = 1. Then,

E[β(Xi) (φ(π0(Xi)µ1(Xi); η̂−k)− φ(π0(Xi)µ1(Xi); η)) | O−k] = OP(Rk1,n)

Proof. For ease of notation, we omit the dependence on Xi and −k. The proof follows an analogous
argument to Lemma B.2. Observe that

E[β(Xi) (φ(π0(Xi)µ1(Xi); η̂)− φ(π0(Xi, µ1(Xi); η))] =

E[β(Xi)

{
((1−Di)− π̂0)µ̂1 +

Di

π̂1
(Yi − µ̂1)π̂0 + π̂0µ̂1 − ((1−Di)− π0)µ1 −

Di

π1
(Yi − µ1)π0 − π0µ1

}
]

(1)
=

E[β(Xi)

{
(π0 − π̂0)µ̂1 +

π1

π̂1
(µ1 − µ̂1)π̂0

}
+ π̂0µ̂1 − π0µ1}]

(2)
=

E[β(Xi)

{
(π0 − π̂0)µ̂1 +

π1

π̂1
(µ1 − µ̂1)π̂0 + π̂0(µ̂1 − µ1) + µ1(π̂0 − π0)

}
] =

E[β(Xi)

{
(µ̂1 − µ1)(π0 − π̂0) +

π1 − π̂1

π̂1
(µ1 − µ̂1)π̂0

}
]

where (1) applies iterated expectations, (2) adds/subtracts π̂0µ1, and the final equality re-arranges. The
result then follows by applying the assumption of bounded propensity score estimator and applying
the Cauchy-Schwarz inequality.

Lemma B.8 (Convergence of plug-in influence function estimators for instrumental variable bounds).
Suppose Oi = (Xi, Zi, Di, Yi) ∼ P (·) i.i.d. for i = 1, . . . , n, where Zi ∈ Z has finite support and satisfies
(Yi(0), Yi(1)) ⊥ Zi | Xi. Define the remainder terms Rk2,n = ‖Ê−k[DiYi | Xi, Zi = z]−E[DiYi | Xi, Zi =

x]‖‖P̂−k(Zi = z | Xi) − P(Zi = z | Xi)‖ and Rk3,n = ‖π̂0,−k(z, ·) − π0(z, ·)‖‖P̂−k(Zi = z | Xi) − P(Zi =
z | Xi)‖. Assume that (i) there exists δ > 0 such that P{P(Zi = z | Xi) ≥ δ} = 1; (ii) there exists ε > 0
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such that P{P̂−k(Zi = z | Xi) ≥ ε} = 1; (iii) ‖Ê−k[DiYi | Xi, Zi = z] − E[DiYi | Xi, Zi = z]‖ = op(1),

‖π̂−k(·, z)− π(·, z)‖ = oP (1) and ‖P̂−k(Zi = z | Xi)− P(Zi = z | Xi)‖ = oP (1). Then,

‖φz(DiYi; η̂−k)]− φz(DiYi; η)‖ = OP (Rk2,n),

‖φz(1−Di; η̂−k)− φz(1−Di; η)‖ = OP (Rk3,n).

Proof. The proof of this result is analogous to Lemma B.5. To ease notation, we write µDYz (x) =
E[DiYi | Zi = z,Xi = x] and λz(x) = P(Zi = x | Xi = x) and suppress the dependence on −k. We
prove the result for φz(DiYi; η), and the result for φz(1 −Di; η̂) follows the same argument. Observe
that we can rewrite

‖φz(DiYi; η̂)− φz(DiYi; η)‖ =∥∥∥∥∥1{Zi = z}
λ̂z(Xi)

(YiDi − µ̂DYz (Xi))−
1{Zi = z}
λz(Xi)

(YiDi − µDYz (Xi)) + (µ̂DYz (Xi)− µDYz (Xi))

∥∥∥∥∥ (1)
=

∣∣∣∣∣1{Zi = z}
λz(Xi)

λz(Xi)− λ̂z(Xi)

λ̂z(Xi)
(YiDi − µ̂DYz (Xi))−

1{Zi = z}
λz(Xi)

(µ̂DYz (Xi)− µ̂DYz (Xi)) + (µ̂DYz (Xi)− µ̂DYz (Xi))

∣∣∣∣∣ (2)

≤

∥∥∥∥∥1{Zi = z}
λz(Xi)

λz(Xi)− λ̂z(Xi)

λ̂z(Xi)
(DiYi − µDYz (Xi))

∥∥∥∥∥+

∥∥∥∥∥1{Zi = z}
λz(Xi)

λz(Xi)− λ̂z(Xi)

λ̂z(Xi)
(µDYz (Xi)− µ̂DY (Xi))

∥∥∥∥∥+

∥∥∥∥1{Zi = z}
λz(Xi)

(µ̂DYz (Xi)− µDYz (Xi)

∥∥∥∥+ ‖µ̂DYz (Xi)− µDYz (Xi)‖
(3)

≤

1

δε
‖λz(Xi)− λ̂z(Xi)‖‖DiYi − µDYz (Xi)‖+

1

δε
‖λz(Xi)− λ̂z(Xi)‖‖µDYz (Xi)− µ̂DYz (Xi)‖+

1

δ
‖µDYz (Xi)− µ̂DYz (Xi)‖+ ‖µDYz (Xi)− µ̂DYz (Xi)‖

where (1) follows by adding and subtracting 1{Zi=z}
λz(x) (Y − µ̂DYz (x)), (2) follows by adding and subtract-

ing 1{Zi=z}
λz(Xi)

λz(Xi)−λ̂z(Xi)

λ̂z(Xi)
µDYz (Xi) and applying the triangle inequality, (3) applies the Cauchy-Shwarz

inequality and the assumptions of strict instrument overlap and bounded instrument propensity esti-
mator. The result then follows from the stated rate conditions.

Lemma B.9. Let β(·) be some function of Xi such that ‖β(·)‖ ≤M for some M <∞ and define the
remainder Rk2,n = ‖Ê−k[DiYi | Xi, Zi = z] − E[DiYi | Xi, Zi = z]‖‖P̂−k(Zi = z | Xi) − P(Zi = z | Xi)‖
and Rk3,n = ‖π̂0,−k(·, z)− π0(·, z)‖‖P̂−k(Zi = z | Xi)− P(Zi = z | Xi)‖. Assume that there exists ε > 0

such that P{P̂−k(Zi = z | Xi) ≥ ε) = 1. Then,

E[β(Xi)φz(DiYi; η̂−k)− β(Xi)φz(DiYi; η) | O−k] = OP(Rk2,n)

E[β(Xi)φz(1−Di; η̂−k)− β(Xi)φz(1−Di; η) | O−k] = OP(Rk3,n).

Proof. The proof follows a similar argument as the proof of Lemma B.2. To ease notation, we write
µDYz (x) = E[DiYi | Zi = z,Xi = x] and λz(x) = P(Zi = x | Xi = x) and suppress the dependence on
−k. We prove the result for φz(DiYi; η), and the result for φz(1 − Di; η̂) follows the same argument.
Observe that

E[β(Xi)φz(DiYi; η̂)− β(Xi)φz(DiYi; η)] =

E[β(Xi)

(
1{Zi = z}
λ̂z(Xi)

(DiYi − µ̂DYz (Xi))−
1{Zi = z}
λz(Xi)

(DiYi − µDYz (Xi)) + (µ̂DYz (Xi)− µDYz (Xi))

)
]

(1)
=

63



E[β(Xi)

(
λz(Xi)

λ̂z(Xi)
(µDYz (Xi)− µ̂DYz (Xi)) + (µ̂DYz (Xi)− µ̂DYz (Xi))

)
] =

E[β(Xi)
(µ̂DYz (Xi)− µ̂DYz (Xi))( ˆλz(Xi)− λz(Xi))

π̂1(Xi)
]

(2)

≤

1

ε
E[β(Xi)(µ̂

DY
z (Xi)− µ̂DYz (Xi))( ˆλz(Xi)− λz(Xi))]

where (1) follows by iterated expectations and (2) by the assumption of bounded instrument propensity
estimator. The result then follows by applying the Cauchy-Schwarz inequality and using ‖β(·)‖ ≤
M .

C Additional theoretical results
In this section, we state and prove various additional theoretical results that are discussed briefly in
the main text.

C.1 Variance estimation for bounds on overall predictive disparities

We now develop a consistent estimator of the asymptotic covariance matrix of our estimators of the
overall predictive performance bounds. Recall from the statement and proof of Theorem 5.1, if R1.,n =
oP(1/

√
n), then

√
n

((
p̂erf(s;β,∆)

p̂erf(s;β,∆)

)
−
(

perf(s;β,∆)
perf(s;β,∆)

))
d−→ N (0,Σ) ,

where Σ = Cov
(

(perfi,perf
i
)′
)

for perfi = β0,i+β1,i(1−Di)
(
1{β1,i > 0}δi + 1{β1,i ≤ 0}δi

)
+β1,iφ1(Yi; η)

and perf
i

= β0,i+β1,i(1−Di)
(
1{β1,i > 0}δi + 1{β1,i ≤ 0}δi

)
+β1,iφ1(Yi; η) and E[perfi] = perf(s;β,∆),

E[perf
i
] = perf(s;β,∆).

Consider the following estimator of the asymptotic covariance matrix

Σ̂ =
1

n

n∑
i=1

(
p̂erf(Oi; η̂−Ki)− p̂erf(s;β,∆)

p̂erf(Oi; η̂−Ki)− p̂erf(s;β,∆)

)(
p̂erf(Oi; η̂−Ki)− p̂erf(s;β,∆)

p̂erf(Oi; η̂−Ki)− p̂erf(s;β,∆)

)′
.

To show that Σ̂
p−→ Σ, it suffices to show convergence in probability for each entry. We prove this directly

by establishing the following Lemma, which extends Lemma 1 in Dorn, Guo and Kallus (2021).

Lemma C.1. Let φ1, φ2 be any two square integrable functions. Let φ̂1,n =
(
φ̂1(Oi), . . . , φ̂1(On)

)
, φ̂2,n =(

φ̂2(Oi), . . . , φ̂2(On)
)

be random vectors satisfying

‖φ̂1,n − φ1,n‖L2(Pn) :=

√√√√n−1

n∑
i=1

(φ̂1(Oi)− φ1(Oi))2 = oP(1),

‖φ̂2,n − φ2,n‖L2(Pn) :=

√√√√n−1

n∑
i=1

(φ̂2(Oi)− φ2(Oi))2 = oP(1),

where φ1,n = (φ1(Oi), . . . , φ1(On)) and φ2,n = (φ2(Oi), . . . , φ2(On)). Define Pn to be the empirical
distribution. Then, the second moments of Pn converge in probability to the respective second moments
of (φ1(Oi), φ2(Oi)) ∼ P

Proof. Let φ̂i,1 = φ̂i(Oi) and define φi,1, φ̂i,1, φi,2 analogously. To prove this result, we first show that
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En[φ̂2
1,i] = E[φ2

1,i] + oP(1) since the same argument applies for φ2,i. Observe that

n−1
n∑
i=1

φ̂1,i − E[φ2
i,1] = n−1

n∑
i=1

(φ̂2
i,1 − φ2

i,1) + (En − E)[φ2
i,1],

where (En − E)[φ2
i,1] = oP(1). Furthermore, we can rewrite the first term as

n−1
n∑
i=1

(φ̂2
i,1 − φ2

i,1) = n−1
n∑
i=1

(
φ̂i,1 − φi,1

)(
φ̂i,1 + φi,1

)
=

n−1
n∑
i=1

(
φ̂i,1 − φi,1

)(
φ̂i,1 − φi,1 + 2φi,1

)
≤ ‖φ̂i,n − φi,1‖

(
‖φ̂i,1 − φi,1‖+ 2‖φi,1‖

)
= oP(1),

where the last inequality applies the Cauchy-Schwarz inequality and triangle inequality. We next show
that En[φ̂i,1φ̂i,2] = E[φi,1φi,2] + oP(1). Observe that

n−1
n∑
i=1

φ̂i,1φ̂i,2 − E[φi,1φi,2] = n−1
n∑
i=1

(
φ̂i,1φ̂i,2 − φi,1φi,2

)
+ (En − E)[φi,1φi,2],

where (En − E)[φi,1φi,2] = oP(1). We can further rewrite the first term as

n−1
n∑
i=1

(
φ̂i,1φ̂i,2 − φi,1φi,2

)
= n−1

n∑
i=1

(
φ̂i,1(φ̂i,2 − φi,2) + φi,2(φ̂i,1 − φi,1)

)
=

n−1
n∑
i=1

φi,1(φ̂i,2 − φi,2) + n−1
n∑
i=1

(φ̂i,1 − φi,1)(φ̂i,2 − φi,2) + n−1
n∑
i=1

φi,2(φ̂i,1 − φi,1) ≤

‖φ1,n‖‖φ̂2,n − φ2,n‖+ ‖φ̂1,n − φ1,n‖‖φ̂2,n − φ2,n‖+ ‖φ2,n‖‖φ̂1,n − φ1,n‖ = oP(1),

where the last inequality applies Cauchy-Schwarz inequality.

We show that the conditions of Lemma C.1 are satisfied for p̂erf(Oi; η̂−Ki) and p̂erf(Oi; η̂−Ki).

The convergence of probability of the sample estimator Σ̂ then follows immediately by the continuous
mapping theorem since we already established the convergence of the first moments in Theorem 5.1

provided we show that ‖p̂erf
k

n − perf
k
n‖2, and ‖p̂erf

k

n
− perfk

n
‖2 are oP(1) for each fold k.

Lemma C.2. Under the same assumptions as Theorem 5.1, for each fold k,

‖p̂erfi − perfi‖L2(Pkn) = oP(1)

‖p̂erf
i
− perf

i
‖L2(Pkn) = oP(1)

conditionally on O−k.

Proof. We prove the result for p̂erfn since the analogous argument applies for p̂erf
n
. Following the

proof of Lemma B.5, we observe that

‖p̂erfi − perfi‖L2(Pkn) ≤
‖Di‖L2(Pkn)

δ

‖π1 − π̂1‖L2(Pkn)

ε
‖Yi − µ1(Xi)‖L2(Pkn)+

‖Di‖L2(Pkn)

δ

‖π1 − π̂1‖L2(Pkn)

ε
‖µ̂1 − µ1‖L2(Pkn) +

‖Di‖L2(Pkn)

δ
‖µ̂1 − µ1‖L2(Pkn) + ‖µ̂1 − µ1‖L2(Pkn) =
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Op(‖π1 − π̂1‖L2(P)‖Yi − µ1(Xi)‖L2(P) + ‖π1 − π̂1‖L2(P)‖µ̂1 − µ1‖L2(P) + ‖µ̂1 − µ1‖L2(P)).

where the last line applies Markov’s Inequality. The result is then immediate.

By a straightforward extension, we can develop consistent estimators of the asymptotic covariance
matrix under nonparametric outcome bounds and instrumental variable bounds as well.

C.2 Bounding predictive disparities under the MOSM

As mentioned in the main text, we can further bound the predictive disparities of a given risk assessment
under the MOSM. Recall that now Xi = (Gi, X̄i)

′. First consider the overall predictive disparity, and
observe that, for g ∈ {0, 1},

perfg(s;β) = E[β0,i + β1,iµ1(Xi) + β1,iπ0(Xi)δ(Xi) | Gi = g] =

P (Gi = g)−1E[β0,i1{Gi = g}+ β1,i1{Gi = g}µ1(Xi) + β1,i1{Gi = g}π0(Xi)δ(Xi)].

where αg = P (Gi = g). Therefore disp(s;β) can be equivalently written as

α−1
1 E[β0,iGi+β1,iGiµ1(Xi)+β1,iGiπ0(Xi)δ(Xi)]−α−1

0 E[β0,i(1−Gi)+β1,i(1−Gi)µ1(Xi)+β1,i(1−Gi)π0(Xi)δ(Xi)].

Since this is a linear function δ, we can immediately obtain sharp bounds. In contrast, for the positive-
class predictive disparity, we provide non-sharp bounds since the positive-class predictive-disparity can
only be expressed as the difference of two linear-fractional functions in δ(·).

Lemma C.3. Define H(disp(s;β); ∆) to be the set of all overall predictive disparities that are consistent
with the MOSM. To ease notation, let βg0,i = β0,i/P (Gi = g), βg1,i = β1,i/P (Gi = g) for g ∈ {0, 1}, and

β̃0,i = β1
0,i − β0

0,i, β̃1,i = β1
1,i − β0

1,i. Under Assumption 2.1,

H(disp(s;β); ∆) = [disp(s;β,∆), disp(s;β,∆)],

where

disp(s;β,∆) := E[β̃0,i + β̃1,iµ1(Xi) + β̃1,iπ0(Xi)(νiδi + νiδi)]

disp(s;β,∆) := E[β̃0,i + β̃1,iµ1(Xi) + β̃1,iπ0(Xi)(νiδi + νiδi)].

for νi = Gi1{β1,i ≥ 0}+ (1−Gi)1{β1,i ≤ 0} and νi = Gi1{β1,i < 0}+ (1−Gi)1{βi,1 > 0}.

Proof. To prove the result, we notice that disp(s;β) can be rewritten as

E[β̃0,i + β̃1,iµ1(Xi) + β̃1,iπ0(Xi)δ(Xi)]

using the definitions of β̃0,i, β̃1,i. Following the same logic as Lemma 2.1 in the main text, it then
follows immediately that H(disp(s;β); ∆) equals the closed interval

[β̃0,i + β̃1,iµ1(Xi) + β̃1,iπ0(Xi)
(

1{β̃1,i ≥ 0}δi + 1{β̃1,i < 0}δi
)
,

β̃0,i + β̃1,iµ1(Xi) + β̃1,iπ0(Xi)
(

1{β̃1,i ≥ 0}δi + 1{β̃1,i < 0}δi
)

].

The result then follows by noticing that

1{β̃1,i ≥ 0} = 1{(Gi − p)βi,1 ≥ 0} = Gi1{β1,i ≥ 0}+ (1−Gi)1{β1,i ≤ 0}.

1{β̃1,i < 0} = 1{(Gi − p)βi,1 < 0} = Gi1{β1,i < 0}+ (1−Gi)1{βi,1 > 0}.
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Lemma C.4. Define H(disp+(s;β); ∆) to be the set of all positive-class disparities that are consistent
with the MOSM. Under Assumption 2.1,

H(disp+(s;β); ∆) ⊆ [disp
+

(s;β,∆), disp+(s;β,∆)],

where disp+(s;β,∆) = perf+,1(s;β) − perf
+,0

(s, β), disp
+

(s;β,∆) = perf
+,1

(s;β) − perf+,0(s, β) for,

g ∈ {0, 1},

perf+,g(s;β) = sup
δ∈∆

E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi) | Gi = g]

E[µ1(Xi) + π0(Xi)δ(Xi) | Gi = g]
,

perf
+,g

(s;β) = inf
δ∈∆

E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi) | Gi = g]

E[µ1(Xi) + π0(Xi)δ(Xi) | Gi = g]
.

Proof. Observe that, for g ∈ {0, 1},

perf+,g(s;β, δ) =
E[β0,iµ1(Xi) + β0,iπ0(Xi)δ(Xi) | Gi = g]

E[µ1(Xi) + π0(Xi)δ(Xi) | Gi = g]
,

and so the positive-class predictive disparity disp+(s;β) can be written as disp+(s;β, δ) = perf+,1(s;β, δ)−
perf+,0(s;β, δ). The result then follows since

sup
δ∈∆

disp+(s;β, δ) ≤ sup
δ∈∆

perf+,1(s;β, δ)− inf
δ∈∆

perf+,0(s;β, δ)

and
inf
δ∈∆

disp+(s;β, δ) ≥ inf
δ∈∆

perf+,1(s;β, δ)− sup
δ∈∆

perf+,0(s;β, δ).

C.3 Estimating bounds on overall predictive disparities

We construct estimators for the bounds on the overall predictive disparities under the MOSM, disp(s;β,∆)

and disp(s;β,∆). We develop the estimators assuming that P(Gi = 1) is known, but they can be easily
extended to the case where this is estimated. We also develop the estimators assuming that the bound-
ing functions δ(·), δ(·) in the MOSM are known. The extensions to the cases of estimated nonparametric
outcome regression bounds and estimated instrumental variable bounds are straightforward in light of
the results in Section 5.1.

We make use of K-fold cross-fitting. For each fold k, we construct estimators of the nuisance
functions η̂−k = (π̂1,−k, µ̂1,−k) using only the sample of observations O−k not in the k-th fold. For
each observation in the k-th fold, we construct

disp(Oi; η̂−k) := β̃0,i + β̃1,iφ1(Yi; η̂−k) + β̃1,i(1−Di)(νiδ + νiδi), (27)

disp(Oi; η̂−k) := β̃0,i + β̃1,iφ1(Yi; η̂−k) + β̃1,i(1−Di)(νiδ + νiδi). (28)

(29)

We then estimate the upper bound on overall predictive disparities under the MOSM by taking the

average across all units in the historical data d̂isp(s;β; ∆) := En[disp(Oi; η̂−Ki)] and d̂isp(s;β,∆) :=
En[disp(Oi; η̂−Ki)]. Algorithm 4 summarizes our proposed estimators for the overall predictive disparity
bounds under the MOSM and their associated standard errors.

By the same argument as the proof of Theorem 5.1, we can derive the rate of convergence of our
proposed estimators and provide conditions under which they are jointly asymptotically normal.
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Algorithm 4: Pseudo-algorithm for overall predictive disparity bounds estimators.

Input: Data O = {(Oi)}ni=1 where Oi = (Xi, Di, Yi), number of folds K.
1 for k = 1, . . . ,K do
2 Estimate η̂−k = (π̂1,−k, µ̂1,−k).

3 Set disp(Oi; η̂−K(i)) and disp(Oi; η̂−K(i)) for all i ∈ Ok.

4 ; Set d̂isp(s;β,∆) = En[disp(Oi; η̂−K(i))], d̂isp(s;β,∆) = En[disp(Oi; η̂−K(i))];

5 Set σ̂i,11 = (disp(Oi; η̂−K(i))− d̂isp(s;β,∆))2,

σ̂i,12 = (disp(Oi; η̂−K(i))− d̂isp(s;β,∆))(disp(Oi; η̂−K(i))− d̂isp(s;β,∆)), and

σ̂i,22 = (disp(Oi; η̂−K(i))− d̂isp(s;β,∆))2;

Output: Estimates d̂isp(s;β,∆) = En[disp(Oi; η̂−K(i))], d̂isp(s;β,∆) = En[disp(Oi; η̂−K(i))].

Output: Estimated covariance matrix n−1
∑n

i=1

(
σ̂i,11 σ̂i,12

σ̂i,12 σ̂i,22

)

Proposition C.1. Under the same assumptions as Theorem 5.1,

|p̂erf(s;β,∆)− perf(s;β,∆)| = OP(1/
√
n+

K∑
k=1

Rk1,n)

|p̂erf(s;β,∆)− perf(s;β,∆)| = OP(1/
√
n+

K∑
k=1

Rk1,n).

If further Rk1,n = oP(1/
√
n) for all folds k, then

√
n

((
d̂isp(s;β,∆)

d̂isp(s;β,∆)

)
−

(
d̂isp(s;β,∆)

d̂isp(s;β,∆)

))
N−→ (0,Σ)

for covariance matrix Σ = Cov
(

(dispi, disp
i
)
)

where dispi = β̃0,i+ β̃1,iφ1(Yi; η)+ β̃1,i(1−Di)(νiδ+νiδi)

and disp
i

= β̃0,i + β̃1,iφ1(Yi; η) + β̃1,i(1−Di)(νiδ + νiδi).

As in the main text, we can analogously extend our estimators for the bounds on overall predic-
tive disparities under the MOSM to the case with estimated bounding functions (e.g., nonparametric
outcome regression bounds and instrumental variable bounds). Since this merely involves replacing
plugging in an estimator for the appropriate uncentered efficient influence function into the estimator
defined above, we skip providing the details.

C.4 Estimating bounds on positive-class predictive disparities

We now construct estimators for the bounds on positive-class predictive disparities under the MOSM,
disp

+
(s;β,∆) and disp+(s;β,∆). To do so, we develop our estimator for the group-specific positive-

class performance bounds perf+,g(s;β,∆) and perf
+,g

(s;β,∆).

We once again make use of K-fold cross-fitting. For each fold k = 1, . . . ,K, we construct estimators
of the nuisance functions η̂−k using only the sample of observations O−k. We then construct a fold-
specific estimate of the upper bound for group g by solving

p̂erf
k

+,g(s;β,∆n) := max
δ̃∈∆n

Ekn[1{Gi = g}
(
β0,iφ1(Yi; η̂−k) + β0,i(1−Di)δ̃i

)
]

Ekn[1{Gi = g}
(
φ1(Yi; η̂−k) + (1−Di)δ̃i

)
]

. (30)
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The estimator then averages the fold-specific estimates p̂erf+,g(s;β,∆n) = K−1
∑K

k=1 p̂erf
k

+,g(s;β,∆n),

and p̂erf
+,g

(s;β,∆) is defined analogously. We then estimate the bounds on positive-class predictive

disparities by

d̂isp+(s;β,∆) = p̂erf+,1(s;β,∆)− p̂erf
+,1

(s;β,∆),

d̂isp
+

(s;β,∆) = p̂erf
+,1

(s;β,∆)− p̂erf+,1(s;β,∆).

To analyze the rate of convergence of d̂isp+(s;β,∆)), we first notice that

‖p̂erf+,g(s;β,∆)− perf+,g(s;β,∆)‖ = OP(1/
√
n+

K∑
k=1

RK1,n)

by the same argument as the proof of Theorem 5.2. The following result is then an immediate conse-
quence.

Proposition C.2. Under the same assumptions as Theorem 5.2,

‖d̂isp(s;β,∆)− disp(s;β,∆)‖ = OP(1/
√
n+

K∑
k=1

RK1,n),

‖d̂isp(s;β,∆)− disp(s;β,∆)‖ = OP(1/
√
n+

K∑
k=1

RK1,n).

D Additional Monte Carlo simulations and empirical results
In this section, we report additional Monte Carlo simulations that examine the performance of our
proposed estimators for robust audits.

D.1 Monte Carlo simulations: bounds on true positive rate and false positive rate

Under the same simulation design as described in Section 6.2 of the main text, we now report the
performance of our estimators for the bounds on the true positive rate perf+(s;βtpr) and the false
positive rate perf−(s;βfpr)

We first audit the true positive rate of the risk score for a fixed choice Γ = 2/3, Γ = 3/2, and evalu-
ate how well our proposed estimators recover the true bounds [perf

+
(s;βtpr,∆(Γ)), perf+(s;βtpr,Γ)]

and [perf−(s;βfpr,∆(Γ)),perf−(s;βfpr,Γ)]. Across 1,000 simulated evaluation datasets of varying

size n ∈ {500, 1000, 1500}, we calculate the estimates [p̂erf
+

(s;βtpr,∆(Γ)), p̂erf+(s;βtpr,∆(Γ)] and

[p̂erf−(s;βfpr,∆(Γ)), p̂erf−(s;βfpr,∆(Γ)]. The estimators are constructed using single split of the eval-

uation data, and we estimate the first-stage nuisance functions η = (π1(Xi), µ1(Xi)) using random
forests. Across simulations, we report the average bias of our estimators for the bounds on the true
positive rate in Table A1 and the false positive rate in Table A2. As the size of the evaluation data
grows larger, the average bias of our estimators of the bounds quickly decline in magnitude, illustrating
Corollary 5.1.

We next illustrate how our proposed estimators can be used to conduct sensitivity analyses on
the overall performance of the risk score under alternative assumptions on the strength of unmeasured
confounding. We now set Γ = 1/Γ̃, Γ = Γ̃ for Γ̃ ≥ 1, and report results varying Γ̃ ∈ {1, . . . , 2.5}. For
each choice of Γ̃, we again simulate 1,000 evaluation datasets of size n = 1000 and calculate estimates

[p̂erf
+

(s;βtpr,∆(Γ)), p̂erf+(s;βtpr,∆(Γ)] and [p̂erf−(s;βfpr,∆(Γ)), p̂erf−(s;βfpr,∆(Γ)]. Figure A1 plots

the distribution of our estimators across simulations (red, box plots) against the true bounds (black,
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n p̂erf+(s;βtpr,∆(Γ)) SD of p̂erf+(s;βtpr,∆(Γ)) Bias

500 0.788 0.024 -0.056
1000 0.815 0.018 -0.030
1500 0.829 0.014 -0.015

(a) Upper bound on true positive rate

n p̂erf+(s;βtpr,∆(Γ)) SD of p̂erf+(s;βtpr,∆(Γ)) Bias

500 0.233 0.020 0.022
1000 0.205 0.014 -0.005
1500 0.190 0.012 -0.020

(b) Lower bound on true positive rate

Table A1: Bias properties of estimators for the bounds on the true positive rate of a risk score s(·) with
nonparametric outcome bounds

Notes: This table summarizes the average bias of our estimators of the bounds on the true positive rate p̂erf
+

(s;βtpr),

p̂erf+(s;βtpr), and the standard deviation of our estimators across simulations. We report these results for n ∈
{500, 1000, 1500}. The positive class performance estimators are constructed using a single sample split, and the nui-
sance functions are estimated using random forests. The results are computed over 1,000 simulations. See Section 6.2 for
further details on the simulation design.

Model n p̂erf−(s;βfpr,∆(Γ)) SD of p̂erf−(s;βfpr,∆(Γ)) Bias

logistic
500 0.781 0.026 -0.054
1000 0.810 0.019 -0.025
1500 0.825 0.016 -0.009

random forest
500 0.772 0.025 -0.063
1000 0.802 0.019 -0.033
1500 0.818 0.014 -0.017

(a) Upper bound on false positive rate

Model n p̂erf−(s;βfpr,∆(Γ)) SD of p̂erf−(s;βfpr,∆(Γ)) Bias

logistic
500 0.237 0.024 0.048
1000 0.212 0.015 0.024
1500 0.198 0.012 0.009

random forest
500 0.204 0.020 0.015
1000 0.182 0.014 -0.006
1500 0.170 0.012 -0.018

(b) Lower bound on false positive rate

Table A2: Bias properties of estimators for the bounds on the false positive rate of a risk score s(·) with
nonparametric outcome bounds

Notes: This table summarizes the average bias of our estimators of the bounds on the fals positive rate p̂erf
−

(s;βfpr),

p̂erf−(s;βfpr), and the standard deviation of our estimators across simulations. We report these results for n ∈
{500, 1000, 1500}. The positive class performance estimators are constructed using a single sample split, and the nui-
sance functions are estimated using random forests. The results are computed over 1,000 simulations. See Section 6.2 for
further details on the simulation design.
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dashed line) as the magnitude of unmeasured confounding varies.

(a) True positive rate (b) False positive rate

Figure A1: Estimated bounds on the true positive rate and false positive rate of a risk score s(·) under the
MOSM as Γ,Γ varies.

Notes: This figure illustrates box-plots (red) for the distribution of estimators of the bounds on the true positive rate
(Panel A) and the false positive rate (Panel B) as Γ = 1/Γ̃, Γ = Γ̃ varies. The dashed black lines show the true upper and
lower bounds for each value of Γ̃. The positive class performance estimators are constructed using a single split, and the
nuisance functions are estimated using random forests. We report these results for n = 1000. The results are computed
over 1,000 simulations. See Section 6.2 for further details on the simulation design.

D.2 Additional tables for the consumer lending empirical illustration

The table below provides detailed descriptions of the variable names in right panel of Table 3 in the
main text.
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Variable name Detailed description

Total net income
Total net income for all applicants
on the personal loan application

Occupation type Industry code of 1st applicant’s occupation.

Mos in current employment
Number of months 1st applicant

has held current job.

Max delinquency in 12 mos
Maximum delinquency over last 12 months
(home loan, personal loan or credit card).

Exposure to loan amount Exposure to requested personal loan amount.

Existing personal loan balance Existing personal loan balance of applicants.

Current days in debt Current number of days in debt of all applicants.

Credit bureau score External credit score.

Accommodation status
Type of accommodation applicant currently

occupies (e.g., owned, rented, etc).

# of credit card apps in 12 mos (all applicants)
Number of credit card applications submitted

by all applications in last 12 months.

# of credit card apps in 12 mos (1st applicant)
Number of credit card applications submitted

by 1st applicant in last 12 months.

# of check acct payment reversals in 6 mos (all applicants)
Number of checking account payment

reversals by all applicants in last 6 months.

# of check acct payment reversals in 6 mos (1st applicants)
Number of checking account payment

reversals by first applicant in last 6 months.

Table A3: Detailed description of variable names in right panel of Table 3.
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